H2O2 increases de novo synthesis of (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin via GTP cyclohydrolase I and its feedback regulatory protein in vitiligo

2008 ◽  
Vol 32 (1) ◽  
pp. 86-94 ◽  
Author(s):  
B. Chavan ◽  
W. Beazley ◽  
J. M. Wood ◽  
H. Rokos ◽  
H. Ichinose ◽  
...  
2000 ◽  
Vol 347 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Beat THÖNY ◽  
Günter AUERBACH ◽  
Nenad BLAU

Tetrahydrobiopterin (BH4) cofactor is essential for various processes, and is present in probably every cell or tissue of higher organisms. BH4 is required for various enzyme activities, and for less defined functions at the cellular level. The pathway for the de novo biosynthesis of BH4 from GTP involves GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase and sepiapterin reductase. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase. Based on gene cloning, recombinant expression, mutagenesis studies, structural analysis of crystals and NMR studies, reaction mechanisms for the biosynthetic and recycling enzymes were proposed. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I, the expression of which may be under the control of cytokine induction. In the liver at least, activity is inhibited by BH4, but stimulated by phenylalanine through the GTP cyclohydrolase I feedback regulatory protein. The enzymes that depend on BH4 are the phenylalanine, tyrosine and tryptophan hydroxylases, the latter two being the rate-limiting enzymes for catecholamine and 5-hydroxytryptamine (serotonin) biosynthesis, all NO synthase isoforms and the glyceryl-ether mono-oxygenase. On a cellular level, BH4 has been found to be a growth or proliferation factor for Crithidia fasciculata, haemopoietic cells and various mammalian cell lines. In the nervous system, BH4 is a self-protecting factor for NO, or a general neuroprotecting factor via the NO synthase pathway, and has neurotransmitter-releasing function. With regard to human disease, BH4 deficiency due to autosomal recessive mutations in all enzymes (except sepiapterin reductase) have been described as a cause of hyperphenylalaninaemia. Furthermore, several neurological diseases, including Dopa-responsive dystonia, but also Alzheimer's disease, Parkinson's disease, autism and depression, have been suggested to be a consequence of restricted cofactor availability.


2000 ◽  
Vol 349 (1) ◽  
pp. 353-356 ◽  
Author(s):  
Cynthia J. MEININGER ◽  
Rebecca S. MARINOS ◽  
Kazuyuki HATAKEYAMA ◽  
Raul MARTINEZ-ZAGUILAN ◽  
Jose D. ROJAS ◽  
...  

Endothelial cells (EC) from diabetic BioBreeding (BB) rats have an impaired ability to produce NO. This deficiency is not due to a defect in the constitutive isoform of NO synthase in EC (ecNOS) or alterations in intracellular calcium, calmodulin, NADPH or arginine levels. Instead, ecNOS cannot produce sufficient NO because of a deficiency in tetrahydrobiopterin (BH4), a cofactor necessary for enzyme activity. EC from diabetic rats exhibited only 12% of the BH4 levels found in EC from normal animals or diabetes-prone animals which did not develop disease. As a result, NO synthesis by EC of diabetic rats was only 18% of that for normal animals. Increasing BH4 levels with sepiapterin increased NO production, suggesting that BH4 deficiency is a metabolic basis for impaired endothelial NO synthesis in diabetic BB rats. This deficiency is due to decreased activity of GTP-cyclohydrolase I, the first and rate-limiting enzyme in the de novo biosynthesis of BH4. GTP-cyclohydrolase activity was low because of a decreased expression of the protein in the diabetic cells.


2020 ◽  
Vol 117 (50) ◽  
pp. 31838-31849
Author(s):  
Rebecca Ebenhoch ◽  
Simone Prinz ◽  
Susann Kaltwasser ◽  
Deryck J. Mills ◽  
Robert Meinecke ◽  
...  

Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). Besides other roles, BH4 functions as cofactor in neurotransmitter biosynthesis. The BH4 biosynthetic pathway and GCH1 have been identified as promising targets to treat pain disorders in patients. The function of mammalian GCH1s is regulated by a metabolic sensing mechanism involving a regulator protein, GCH1 feedback regulatory protein (GFRP). GFRP binds to GCH1 to form inhibited or activated complexes dependent on availability of cofactor ligands, BH4 and phenylalanine, respectively. We determined high-resolution structures of human GCH1−GFRP complexes by cryoelectron microscopy (cryo-EM). Cryo-EM revealed structural flexibility of specific and relevant surface lining loops, which previously was not detected by X-ray crystallography due to crystal packing effects. Further, we studied allosteric regulation of isolated GCH1 by X-ray crystallography. Using the combined structural information, we are able to obtain a comprehensive picture of the mechanism of allosteric regulation. Local rearrangements in the allosteric pocket upon BH4 binding result in drastic changes in the quaternary structure of the enzyme, leading to a more compact, tense form of the inhibited protein, and translocate to the active site, leading to an open, more flexible structure of its surroundings. Inhibition of the enzymatic activity is not a result of hindrance of substrate binding, but rather a consequence of accelerated substrate binding kinetics as shown by saturation transfer difference NMR (STD-NMR) and site-directed mutagenesis. We propose a dissociation rate controlled mechanism of allosteric, noncompetitive inhibition.


1997 ◽  
Vol 273 (2) ◽  
pp. H665-H672 ◽  
Author(s):  
K. Kasai ◽  
Y. Hattori ◽  
N. Banba ◽  
S. Hattori ◽  
S. Motohashi ◽  
...  

Because tetra-hydrobiopterin (BH4) is an essential cofactor for nitric oxide (NO) formation, we investigated whether BH4 synthesis is required for cytokine-induced NO production in cultured rat cardiac myocytes. The total biopterin content of untreated cardiac myocytes was below our limit of detection. However, treatment with interleukin-1 alpha (IL-1 alpha) + interferon-gamma (IFN-gamma) caused a significant rise in biopterin levels and induced NO synthesis. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a selective inhibitor of GTP cyclohydrolase I (the rate-limiting enzyme for de novo BH4 synthesis), completely abolished the elevation in biopterin levels induced by IL-1 alpha + IFN-gamma. DAHP also caused a concentration-dependent inhibition of (IL-1 alpha + IFN-gamma)-induced NO synthesis. Similarly, N-acetylserotonin, an inhibitor of the BH4 synthetic enzyme sepiapterin reductase, blocked increases in biopterin levels as well as NO synthesis induced by IL-1 alpha + IFN-gamma. Sepiapterin, substrate for BH4 synthesis via the pterin salvage pathway, prevented this inhibition by DAHP or N-acetylserotonin, and this effect was blocked by methotrexate. Sepiapterin and, to a lesser extent, BH4 dose dependently enhanced (IL-1 alpha + IFN-gamma)-induced NO synthesis, suggesting that the concentration of BH4 limits the rate of NO production. Inducible NO synthase mRNA and GTP cyclohydrolase I mRNA were induced by IL-1 alpha + IFN-gamma in parallel. We thus demonstrate that BH4 synthesis is an absolute requirement for induction of NO synthesis by cytokines in cardiac myocytes.


2008 ◽  
Vol 190 (24) ◽  
pp. 7876-7884 ◽  
Author(s):  
Gabriella Phillips ◽  
Basma El Yacoubi ◽  
Benjamin Lyons ◽  
Sophie Alvarez ◽  
Dirk Iwata-Reuyl ◽  
...  

ABSTRACT Queuosine (Q) and archaeosine (G+) are hypermodified ribonucleosides found in tRNA. Q is present in the anticodon region of tRNAGUN in Eukarya and Bacteria, while G+ is found at position 15 in the D-loop of archaeal tRNA. Prokaryotes produce these 7-deazaguanosine derivatives de novo from GTP through the 7-cyano-7-deazaguanine (pre-Q0) intermediate, but mammals import the free base, queuine, obtained from the diet or the intestinal flora. By combining the results of comparative genomic analysis with those of genetic studies, we show that the first enzyme of the folate pathway, GTP cyclohydrolase I (GCYH-I), encoded in Escherichia coli by folE, is also the first enzyme of pre-Q0 biosynthesis in both prokaryotic kingdoms. Indeed, tRNA extracted from an E. coli ΔfolE strain is devoid of Q and the deficiency is complemented by expressing GCYH-I-encoding genes from different bacterial or archaeal origins. In a similar fashion, tRNA extracted from a Haloferax volcanii strain carrying a deletion of the GCYH-I-encoding gene contains only traces of G+. These results link the production of a tRNA-modified base to primary metabolism and further clarify the biosynthetic pathway for these complex modified nucleosides.


2011 ◽  
Vol 16 (8) ◽  
pp. 836-844 ◽  
Author(s):  
Li Li ◽  
Yuhong Du ◽  
Wei Chen ◽  
Haian Fu ◽  
David G. Harrison

Tetrahydrobiopterin (BH4) is an essential cofactor for the nitric oxide (NO) synthases and the aromatic amino acid hydroxylases. Insufficient BH4 has been implicated in various cardiovascular and neurological disorders. GTP cyclohydrolase 1 (GTPCH-1) is the rate-limiting enzyme for de novo biosynthesis of BH4. The authors have recently shown that the interaction of GTPCH-1 with GTP cyclohydrolase feedback regulatory protein (GFRP) inhibits endothelial GTPCH-1 enzyme activity, BH4 levels, and NO production. They propose that agents that disrupt the GTPCH-1/GFRP interaction can increase cellular GTPCH-1 activity, BH4 levels, and NO production. They developed and optimized a novel time-resolved fluorescence resonance energy transfer (TR-FRET) assay to monitor the interaction of GTPCH-1 and GFRP. This assay is highly sensitive and stable and has a signal-to-background ratio (S/B) greater than 12 and a Z′ factor greater than 0.8. This assay was used in an ultra-high-throughput screening (uHTS) format to screen the Library of Pharmacologically Active Compounds. Using independent protein–protein interaction and cellular activity assays, the authors identified compounds that disrupt GTPCH-1/GFRP binding and increase endothelial cell biopterin levels. Thus, this TR-FRET assay could be applied in future uHTS of additional libraries to search for molecules that increase GTPCH-1 activity and BH4 levels.


Sign in / Sign up

Export Citation Format

Share Document