Development and economic evaluation of multivariate anodic incident detection systems

2021 ◽  
Vol 172 ◽  
pp. 107144
Author(s):  
David LaJambe ◽  
Carl Duchesne ◽  
Éric Poulin ◽  
Jayson Tessier
1998 ◽  
Vol 1644 (1) ◽  
pp. 116-123 ◽  
Author(s):  
Natacha Thomas ◽  
Bader Hafeez

Intelligent transportation systems have created new traffic monitoring approaches and fueled new interests in automated incident detection systems. One new monitoring approach utilizes actual travel times experienced by vehicles, called probes, equipped to transmit this information in real time to a control center. The database needed to design and calibrate arterial incident detection systems based on probe travel times is nonexistent. A microscopic traffic simulation package, Integrated Traffic Simulation, was selected and enhanced to generate vehicle travel times for the incident and incident-free conditions on an arterial. We evaluated the enhanced model. Significant variations in probe travel times were observed in the event of incidents. Average travel time, contrary to average occupancy, may increase, decrease, or remain constant on arterial streets downstream of an incident.


2018 ◽  
Vol 12 (1) ◽  
pp. 344-351 ◽  
Author(s):  
Jinhwan Jang

Introduction:An acoustic signal-based tunnel accident detection system was developed in this study. In a tunnel environment, the sound diffusion effect is minimized and thanks to that, discrimination of accident sounds (crash and skid) from other noises can apparently be accomplished.Discussion:The system is composed of three parts: algorithm, field device, and center system. To distinguish accident-related acoustic signals such as a crash or skid among various other sounds in a tunnel, a delicate algorithm that can discriminate those signals from other normal signals generated from moving vehicles was created.Conclusion:The developed algorithm processes acoustic signals to filter out noises and to identify accident-related signals. The field device, installed in a tunnel, collects analog sounds, transforms them into digital signals, and transmits the digital signals to the server in the tunnel traffic management center. Lastly, in the tunnel traffic management center, the acoustic signal processing algorithm described above, installed in a server system, can instantaneously detect accidents. Once confirmed by the system operators, the information on the detected accidents is intended to be provided to drivers following behind as well as relevant agencies to prevent secondary accidents and to respond promptly. The developed system was evaluated in a real tunnel environment using traffic accident sounds acquired from real crash tests. The detection rates were 95, 91, and 80% at distances of 10, 30, and 50 m, respectively with a detection duration less than 1.4 s. Compared to conventional detection systems using loop detectors or video images that have a long detection time of around 1 min, the developed system can be regarded as superior in that it has an extremely short detection time, which, of course, is one of the most important factors for automatic incident detection systems.


Sign in / Sign up

Export Citation Format

Share Document