detection system
Recently Published Documents


TOTAL DOCUMENTS

20361
(FIVE YEARS 9440)

H-INDEX

106
(FIVE YEARS 36)

Author(s):  
Pallepati Vasavi ◽  
Arumugam Punitha ◽  
T. Venkat Narayana Rao

<span lang="EN-US">A Quick and precise crop leaf disease detection is important to increasing agricultural yield in a sustainable manner. We present a comprehensive overview of recent research in the field of crop leaf disease prediction using image processing (IP), machine learning (ML) and deep learning (DL) techniques in this paper. Using these techniques, crop leaf disease prediction made it possible to get notable accuracies. This article presents a survey of research papers that presented the various methodologies, analyzes them in terms of the dataset, number of images, number of classes, algorithms used, convolutional neural networks (CNN) models employed, and overall performance achieved. Then, suggestions are prepared on the most appropriate algorithms to deploy in standard, mobile/embedded systems, Drones, Robots and unmanned aerial vehicles (UAV). We discussed the performance measures used and listed some of the limitations and future works that requires to be focus on, to extend real time automated crop leaf disease detection system.</span>


Author(s):  
Bagus Haryadi ◽  
Po-Hao Chang ◽  
Akrom Akrom ◽  
Arifan Q. Raharjo ◽  
Galih Prakoso

<span>An analysis of blood circulation was used to identify variations of heart rate and to create an early warning system of autonomic dysfunction. The Poincaré plot analyzed blood circulation using photoplethysmography (PPG) signals between non-smokers and smokers in three different indices: SD1, SD2, and SD1 SD2 ratio (SSR). There were twenty subjects separated into non-smoker and smoker groups with sample sizes of 10, respectively. An independent sample t-test to compare the continuous variables. Whereas, the comparison between two groups employed Fisher’s exact test for categorical variables. The result showed that SD1 was found to be considerably lower in the group of smokers (0.03±0.01) than that of the non-smokers (0.06±0.03). Similarly, SSR was recorded at 0.0012±0.0005 and 0.0023±0.0012 for smoking and non-smoking subjects, respectively. As a comparison, SD2 for non-smokers (25.7±0.5) was lower than smokers (27.3±0.4). In conclusion, we revealed that the parameters of Poincaré plots (SD1, SD2, and SSR) exert good performances to significantly differentiate the PPG signals of the group of non-smokers from those of smokers. We also supposed that the method promises to be a suitable method to distinguish the cardiovascular disease group. Therefore, this method can be applied as a part of early detection system of cardiovascular diseases.</span>


Author(s):  
Riyadh Rahef Nuiaa ◽  
Selvakumar Manickam ◽  
Ali Hakem Alsaeedi ◽  
Esraa Saleh Alomari

Cyberattacks have grown steadily over the last few years. The distributed reflection denial of service (DRDoS) attack has been rising, a new variant of distributed denial of service (DDoS) attack. DRDoS attacks are more difficult to mitigate due to the dynamics and the attack strategy of this type of attack. The number of features influences the performance of the intrusion detection system by investigating the behavior of traffic. Therefore, the feature selection model improves the accuracy of the detection mechanism also reduces the time of detection by reducing the number of features. The proposed model aims to detect DRDoS attacks based on the feature selection model, and this model is called a proactive feature selection model proactive feature selection (PFS). This model uses a nature-inspired optimization algorithm for the feature subset selection. Three machine learning algorithms, i.e., k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were evaluated as the potential classifier for evaluating the selected features. We have used the CICDDoS2019 dataset for evaluation purposes. The performance of each classifier is compared to previous models. The results indicate that the suggested model works better than the current approaches providing a higher detection rate (DR), a low false-positive rate (FPR), <span>and increased accuracy detection (DA).</span> The PFS model shows better accuracy to detect DRDoS attacks with 89.59%.


2022 ◽  
Vol 22 (3) ◽  
pp. 1-17
Author(s):  
Chaonan Shen ◽  
Kai Zhang ◽  
Jinshan Tang

COVID-19 has been spread around the world and has caused a huge number of deaths. Early detection of this disease is the most efficient way to prevent its rapid spread. Due to the development of internet technology and edge intelligence, developing an early detection system for COVID-19 in the medical environment of the Internet of Things (IoT) can effectively alleviate the spread of the disease. In this paper, a detection algorithm is developed, which can detect COVID-19 effectively by utilizing the features from Chest X-ray (CXR) images. First, a pre-trained model (ResNet18) is adopted for feature extraction. Then, a discrete social learning particle swarm optimization algorithm (DSLPSO) is proposed for feature selection. By filtering redundant and irrelevant features, the dimensionality of the feature vector is reduced. Finally, the images are classified by a Support Vector Machine (SVM) for COVID-19 detection. Experimental results show that the proposed algorithm can achieve competitive performance with fewer features, which is suitable for edge computing devices with lower computation power.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-12
Author(s):  
Mu-Yen Chen ◽  
Min-Hsuan Fan ◽  
Li-Xiang Huang

In recent years, vehicular networks have become increasingly large, heterogeneous, and dynamic, making it difficult to meet strict requirements of ultralow latency, high reliability, high security, and massive connections for next generation (6G) networks. Recently, deep learning (DL ) has emerged as a powerful artificial intelligence (AI ) technique to optimize the efficiency and adaptability of vehicle and wireless communication. However, rapidly increasing absolute numbers of vehicles on the roads are leading to increased automobile accidents, many of which are attributable to drivers interacting with their mobile phones. To address potentially dangerous driver behavior, this study applies deep learning approaches to image recognition to develop an AI-based detection system that can detect potentially dangerous driving behavior. Multiple convolutional neural network (CNN )-based techniques including VGG16, VGG19, Densenet, and Openpose were compared in terms of their ability to detect and identify problematic driving.


2022 ◽  
Vol 11 (3) ◽  
pp. 1-11
Author(s):  
Sudhakar Sengan ◽  
Osamah Ibrahim Khalaf ◽  
Vidya Sagar P. ◽  
Dilip Kumar Sharma ◽  
Arokia Jesu Prabhu L. ◽  
...  

Existing methods use static path identifiers, making it easy for attackers to conduct DDoS flooding attacks. Create a system using Dynamic Secure aware Routing by Machine Learning (DAR-ML) to solve healthcare data. A DoS detection system by ML algorithm is proposed in this paper. First, to access the user to see the authorized process. Next, after the user registration, users can compare path information through correlation factors between nodes. Then, choose the device that will automatically activate and decrypt the data key. The DAR-ML is traced back to all healthcare data in the end module. In the next module, the users and admin can describe the results. These are the outcomes of using the network to make it easy. Through a time interval of 21.19% of data traffic, the findings demonstrate an attack detection accuracy of over 98.19%, with high precision and a probability of false alarm.


Author(s):  
Jingmin Dang ◽  
Junhe Zhang ◽  
Xinju Dong ◽  
Lijuan Kong ◽  
Haiye Yu
Keyword(s):  

2022 ◽  
Vol 20 (2) ◽  
pp. 191-197
Author(s):  
Ricardo Conde Camillo da Silva ◽  
Marcos Paulo Oliveira Camargo ◽  
Matheus Sanches Quessada ◽  
Anderson Claiton Lopes ◽  
Jacinto Diassala Monteiro Ernesto ◽  
...  

Author(s):  
Jung kyu Park

<pre>There are several differences between the two types of alarm systems, conventional systems and addressable systems. It is important to carefully determine the introduction of a fire alarm system according to the installation environment. Talking about the main difference relates to how the connected device communicates with the main control panel by sending a signal. Cost is another factor that can be a determinant of your chosen fire alarm system. In this paper, we proposed smart addressable fire detection system. In the proposed system, <span>IoT</span> was used and the network was constructed using <span>ZigBee</span> module. In the configured network, it consists of a local server and a control server. The local server controls the addressing sensor and sends the information obtained from the sensor to the control server. The control server receives data transmitted from the local server and enables quick fire action. In the actual implementation, the local server used the Lycra controller and <span>ZigBee</span> module. In addition, the control server used the Raspberry Pi and <span>ZigBee</span> modules and connected to the Ethernet so that the administrator could monitor or control the local server.</pre>


Sign in / Sign up

Export Citation Format

Share Document