Crystal structure, thermal studies, Hirshfeld surface analysis, vibrational and DFT investigation of organic-inorganic hybrid compound [C 9 H 6 NOBr 2 ] 2 CuBr 4 ·2H 2 O

2016 ◽  
Vol 1125 ◽  
pp. 217-226 ◽  
Author(s):  
Radhia Mesbeh ◽  
Besma Hamdi ◽  
Ridha Zouari
2021 ◽  
Vol 05 ◽  
Author(s):  
Maha Said ◽  
Habib Boughzala

Background: The title compound (C9H9N2)2[CoCl4] belongs to a large compound’s family, enriching the new technologies materials range. Objective: The chemical synthesis and the crystal structure are the main goals to reach in this study. In addition, the optoelectronic properties and the material behavior are investigated. Methods: The single-crystal diffraction, photoluminescence, infrared spectroscopy, and several computations are applied in this work to characterize the studied compound. Results: At room temperature, the synthesized (C9H9N2)2[CoCl4] crystallizes in the monoclinic C2/c space group. The cohesion of the 0-D crystal structure is ensured by hydrogen interactions and confirmed by the Hirshfeld surface analysis. Conclusion: A new hybrid compound is discovered and added to the structural database ICDD. The structural study, the spectroscopic investigations, particularly the photoluminescence, indicate that the newly obtained material is promising for interesting application as a non-linear optical material.


Author(s):  
Ballo Daouda ◽  
Nanou Tiéba Tuo ◽  
Tuncer Hökelek ◽  
Kangah Niameke Jean-Baptiste ◽  
Kodjo Charles Guillaume ◽  
...  

The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl...NPrmdn and N—HPrmdn...OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H...π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (49.0%), H...C/C...H (35.8%) and H...O/O...H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl...NPrmdn and N—HPrmdn...OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


2020 ◽  
Vol 76 (7) ◽  
pp. 1146-1149
Author(s):  
Md. Serajul Haque Faizi ◽  
Tenzile Alagöz ◽  
Ruby Ahmed ◽  
Emine Berrin Cinar ◽  
Erbil Agar ◽  
...  

The title compound, C13H9IN2O3, was synthesized by a condensation reaction between 2-hydroxy-5-nitrobenzaldehyde and 4-iodoaniline, and crystallizes in the orthorhombic space group Pna21. The 4-iodobenzene ring is inclined to the phenol ring by a dihedral angle of 39.1 (2)°. The configuration about the C=N double bond is E. The crystal structure features C—H...O hydrogen-bonding interactions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the packing arrangement are O...H/H...O (26.9%) and H...H (22.0%) interactions.


Author(s):  
Nasiba Pirnazarova ◽  
Ubaydullo Yakubov ◽  
Sevara Allabergenova ◽  
Akmaljon Tojiboev ◽  
Kambarali Turgunov ◽  
...  

The asymmetric unit of the title compound, C16H13N3OS, comprises two molecules (A and B) with similar conformations that differ mainly in the orientation of the phenyl group relative to the rest of the molecule, as expressed by the Cthioamide—Nthioamide—Cphenyl—Cphenyl torsion angle of 49.3 (3)° for molecule A and of 5.4 (3)° for molecule B. In the crystal, two intermolecular N—H...N hydrogen bonds lead to the formation of a dimer with R 2 2(10) graph-set notation. A Hirshfeld surface analysis revealed that H...H interactions are the most important intermolecular interactions, contributing 40.9% to the Hirshfeld surface.


2019 ◽  
Vol 75 (12) ◽  
pp. 1934-1939 ◽  
Author(s):  
Yvon Bibila Mayaya Bisseyou ◽  
Mahama Ouattara ◽  
Pénétjiligué Adama Soro ◽  
R. C. A. Yao-Kakou ◽  
Abodou Jules Tenon

In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-dithiolane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-dithiolane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intramolecular C—H...O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid molecules are associated in R 2 2(14) dimeric units by weak C—H...O interactions. O—H...O hydrogen bonds link the water molecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H...N hydrogen bonding. Analysis of intermolecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water molecules are the main driving force in the crystal packing formation.


Sign in / Sign up

Export Citation Format

Share Document