structure characterization
Recently Published Documents


TOTAL DOCUMENTS

1951
(FIVE YEARS 418)

H-INDEX

66
(FIVE YEARS 15)

2022 ◽  
Vol 204 ◽  
pp. 111987
Author(s):  
Saranyadevi Subramaniam ◽  
Suresh Kumarasamy ◽  
Mathiyazhagan Narayanan ◽  
Muthusamy Ranganathan ◽  
Thirumalaisamy Rathinavel ◽  
...  

2022 ◽  
Vol 306 ◽  
pp. 122809
Author(s):  
M. Tillard ◽  
D. Granier ◽  
C. Reibel ◽  
L. Daenens ◽  
P. Armand

2022 ◽  
Vol 23 (2) ◽  
pp. 888
Author(s):  
Żaneta Arciszewska ◽  
Sofia Gama ◽  
Monika Kalinowska ◽  
Grzegorz Świderski ◽  
Renata Świsłocka ◽  
...  

Caffeic acid (CFA) is one of the various natural antioxidants and chemoprotective agents occurring in the human diet. In addition, its metal complexes play fundamental roles in biological systems. Nevertheless, research on the properties of CFA with lanthanide metals is very scarce, and little to no chemical or biological information is known about these particular systems. Most of their properties, including their biological activity and environmental impact, strictly depend on their structure, stability, and solution behaviour. In this work, a multi-analytical-technique approach was used to study these relationships for the Eu(III)/CFA complex. The synthesized metal complex was studied by FT-IR, FT-Raman, elemental, and thermal (TGA) analysis. In order to examine the chemical speciation of the Eu(III)/CFA system in an aqueous solution, several independent potentiometric and spectrophotometric UV-Vis titrations were performed at different M:L (metal:ligand) and pH ratios. The general molecular formula of the synthesized metal complex in the solid state was [Eu(CFA)3(H2O)3]∙2H2O (M:L ratio 1:3), while in aqueous solution the 1:1 species were observed at the optimum pH of 6 ≤ pH ≤ 10, ([Eu(CFA)] and [Eu(CFA)(OH)]−). These results were confirmed by 1H-NMR experiments and electrospray-ionization mass spectrometry (ESI-MS). To evaluate the interaction of Eu(III)/CFA and CFA alone with cell membranes, electrophoretic mobility assays were used. Various antioxidant tests have shown that Eu(III)/CFA exhibits lower antioxidant activity than the free CFA ligand. In addition, the antimicrobial properties of Eu(III)/CFA and CFA against Escherichia coli, Bacillus subtilis and Candida albicans were investigated by evaluation of the minimum inhibitory concentration (MIC). Eu(III)/CFA shows higher antibacterial activity against bacteria compared to CFA, which can be explained by the highly probable increased lipophilicity of the Eu(III) complex.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Irfan Ali Sabir ◽  
Muhammad Aamir Manzoor ◽  
Iftikhar Hussain Shah ◽  
Xunju Liu ◽  
Muhmmad Salman Zahid ◽  
...  

Abstract Back ground MYB Transcription factors (TFs) are most imperative and largest gene family in plants, which participate in development, metabolism, defense, differentiation and stress response. The MYB TFs has been studied in various plant species. However, comprehensive studies of MYB gene family in the sweet cherry (Prunus avium L.) are still unknown. Results In the current study, a total of 69 MYB genes were investigated from sweet cherry genome and classified into 28 subfamilies (C1-C28 based on phylogenetic and structural analysis). Microcollinearity analysis revealed that dispersed duplication (DSD) events might play an important role in the MYB genes family expansion. Chromosomal localization, the synonymous (Ks) and nonsynonymous (Ka) analysis, molecular characteristics (pI, weight and length of amino acids) and subcellular localization were accomplished using several bioinformatics tools. Furthermore, the members of distinct subfamilies have diverse cis-acting regions, conserved motifs, and intron-exon architectures, indicating functional heterogeneity in the MYB family. Moreover, the transcriptomic data exposed that MYB genes might play vital role in bud dormancy. The quantitative real-time qRT-PCR was carried out and the expression pattern indicated that MYB genes significantly expressed in floral bud as compared to flower and fruit. Conclusion Our comprehensive findings provide supportive insights into the evolutions, expansion complexity and functionality of PavMYB genes. These PavMYB genes should be further investigated as they seem to be brilliant candidates for dormancy manipulation in sweet cherry.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 97
Author(s):  
Kwang-Min Park ◽  
Kyung-Sung Min ◽  
Young-Sook Roh

Additive manufacturing enables innovative structural design for industrial applications, which allows the fabrication of lattice structures with enhanced mechanical properties, including a high strength-to-relative-density ratio. However, to commercialize lattice structures, it is necessary to define the designability of lattice geometries and characterize the associated mechanical responses, including the compressive strength. The objective of this study was to provide an optimized design process for lattice structures and develop a lattice structure characterization database that can be used to differentiate unit cell topologies and guide the unit cell selection for compression-dominated structures. Linear static finite element analysis (FEA), nonlinear FEA, and experimental tests were performed on 11 types of unit cell-based lattice structures with dimensions of 20 mm × 20 mm × 20 mm. Consequently, under the same relative density conditions, simple cubic, octahedron, truncated cube, and truncated octahedron-based lattice structures with a 3 × 3 × 3 array pattern showed the best axial compressive strength properties. Correlations among the unit cell types, lattice structure topologies, relative densities, unit cell array patterns, and mechanical properties were identified, indicating their influence in describing and predicting the behaviors of lattice structures.


Sign in / Sign up

Export Citation Format

Share Document