scholarly journals Minimality of polytopes in a nonlocal anisotropic isoperimetric problem

2021 ◽  
Vol 205 ◽  
pp. 112223
Author(s):  
Marco Bonacini ◽  
Riccardo Cristoferi ◽  
Ihsan Topaloglu
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián Pozuelo ◽  
Manuel Ritoré

Abstract We consider an asymmetric left-invariant norm ∥ ⋅ ∥ K {\|\cdot\|_{K}} in the first Heisenberg group ℍ 1 {\mathbb{H}^{1}} induced by a convex body K ⊂ ℝ 2 {K\subset\mathbb{R}^{2}} containing the origin in its interior. Associated to ∥ ⋅ ∥ K {\|\cdot\|_{K}} there is a perimeter functional, that coincides with the classical sub-Riemannian perimeter in case K is the closed unit disk centered at the origin of ℝ 2 {{\mathbb{R}}^{2}} . Under the assumption that K has C 2 {C^{2}} boundary with strictly positive geodesic curvature we compute the first variation formula of perimeter for sets with C 2 {C^{2}} boundary. The localization of the variational formula in the non-singular part of the boundary, composed of the points where the tangent plane is not horizontal, allows us to define a mean curvature function H K {H_{K}} out of the singular set. In the case of non-vanishing mean curvature, the condition that H K {H_{K}} be constant implies that the non-singular portion of the boundary is foliated by horizontal liftings of translations of ∂ ⁡ K {\partial K} dilated by a factor of 1 H K {\frac{1}{H_{K}}} . Based on this we can define a sphere 𝕊 K {\mathbb{S}_{K}} with constant mean curvature 1 by considering the union of all horizontal liftings of ∂ ⁡ K {\partial K} starting from ( 0 , 0 , 0 ) {(0,0,0)} until they meet again in a point of the vertical axis. We give some geometric properties of this sphere and, moreover, we prove that, up to non-homogeneous dilations and left-translations, they are the only solutions of the sub-Finsler isoperimetric problem in a restricted class of sets.


2001 ◽  
Vol 33 (4) ◽  
pp. 408-416 ◽  
Author(s):  
F. BARTHE

The paper studies an isoperimetric problem for the Gaussian measure and coordinatewise symmetric sets. The notion of boundary measure corresponding to the uniform enlargement is considered, and it is proved that symmetric strips or their complements have minimal boundary measure.


Resonance ◽  
1997 ◽  
Vol 2 (9) ◽  
pp. 65-68 ◽  
Author(s):  
Alladi Sitaram

2009 ◽  
Vol 50 ◽  
Author(s):  
Dainius Dzindzalieta

We consider random walks, say Wn = {0, M1, . . ., Mn} of length n starting at 0 and based on a martingale sequence Mk = X1 + ··· + Xk with differences Xm. Assuming |Xk| \leq 1 we solve the isoperimetric problem Bn(x) = supP\{Wn visits an interval [x,∞)\},  (1) where sup is taken over all possible Wn. We describe random walks which maximize the probability in (1). We also extend the results to super-martingales.For martingales our results can be interpreted as a maximalinequalitiesP\{max 1\leq k\leq n Mk   \geq x\} \leq Bn(x).The maximal inequality is optimal since the equality is achieved by martingales related to the maximizing random walks. To prove the result we introduce a general principle – maximal inequalities for (natural classes of) martingales are equivalent to (seemingly weaker) inequalities for tail probabilities, in our caseBn(x) = supP{Mn  \geq  x}.Our methods are similar in spirit to a method used in [1], where a solution of an isoperimetric problem (1), for integer x is provided and to the method used in [4], where the isoperimetric problem of type (1) for conditionally symmetric bounded martingales was solved for all x ∈ R.


Sign in / Sign up

Export Citation Format

Share Document