scholarly journals Pansu–Wulff shapes in ℍ1

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián Pozuelo ◽  
Manuel Ritoré

Abstract We consider an asymmetric left-invariant norm ∥ ⋅ ∥ K {\|\cdot\|_{K}} in the first Heisenberg group ℍ 1 {\mathbb{H}^{1}} induced by a convex body K ⊂ ℝ 2 {K\subset\mathbb{R}^{2}} containing the origin in its interior. Associated to ∥ ⋅ ∥ K {\|\cdot\|_{K}} there is a perimeter functional, that coincides with the classical sub-Riemannian perimeter in case K is the closed unit disk centered at the origin of ℝ 2 {{\mathbb{R}}^{2}} . Under the assumption that K has C 2 {C^{2}} boundary with strictly positive geodesic curvature we compute the first variation formula of perimeter for sets with C 2 {C^{2}} boundary. The localization of the variational formula in the non-singular part of the boundary, composed of the points where the tangent plane is not horizontal, allows us to define a mean curvature function H K {H_{K}} out of the singular set. In the case of non-vanishing mean curvature, the condition that H K {H_{K}} be constant implies that the non-singular portion of the boundary is foliated by horizontal liftings of translations of ∂ ⁡ K {\partial K} dilated by a factor of 1 H K {\frac{1}{H_{K}}} . Based on this we can define a sphere 𝕊 K {\mathbb{S}_{K}} with constant mean curvature 1 by considering the union of all horizontal liftings of ∂ ⁡ K {\partial K} starting from ( 0 , 0 , 0 ) {(0,0,0)} until they meet again in a point of the vertical axis. We give some geometric properties of this sphere and, moreover, we prove that, up to non-homogeneous dilations and left-translations, they are the only solutions of the sub-Finsler isoperimetric problem in a restricted class of sets.

2020 ◽  
Vol 51 (4) ◽  
pp. 313-332
Author(s):  
Firooz Pashaie

A well-known conjecture of Bang Yen-Chen says that the only biharmonic Euclidean submanifolds are minimal ones. In this paper, we consider an extended condition (namely, $L_1$-biharmonicity) on non-degenerate timelike hypersurfaces of the pseudo-Euclidean space $E_1^4$. A Lorentzian hypersurface $x: M_1^3\rightarrow\E_1^4$ is called $L_1$-biharmonic if it satisfies the condition $L_1^2x=0$, where $L_1$ is the linearized operator associated to the first variation of 2-th mean curvature vector field on $M_1^3$. According to the multiplicities of principal curvatures, the $L_1$-extension of Chen's conjecture is affirmed for Lorentzian hypersurfaces with constant ordinary mean curvature in pseudo-Euclidean space $E_1^4$. Additionally, we show that there is no proper $L_1$-biharmonic $L_1$-finite type connected orientable Lorentzian hypersurface in $E_1^4$.


Geometry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Hua Wang ◽  
Yijun He

Given a positive function on which satisfies a convexity condition, for , we define for hypersurfaces in the th anisotropic mean curvature function , a generalization of the usual th mean curvature function. We call a hypersurface anisotropic minimal if , and anisotropic -minimal if . Let be the set of points which are omitted by the hyperplanes tangent to . We will prove that if an oriented hypersurface is anisotropic minimal, and the set is open and nonempty, then is a part of a hyperplane of . We also prove that if an oriented hypersurface is anisotropic -minimal and its th anisotropic mean curvature is nonzero everywhere, and the set is open and nonempty, then has anisotropic relative nullity .


1937 ◽  
Vol 30 ◽  
pp. i-ii
Author(s):  
R. Wilson

The generators and their orthogonal trajectories form, perhaps, the most useful set of parametric curves for the study of the local geometry of a ruled surface. It is not generally realised, however, that the fundamental quantities of the surface can be expressed quite simply in terms of the geodesic curvature, the geodesic torsion and the normal curvature of the directrix, that particular orthogonal trajectory which is chosen as base curve. Certain of the results are similar in form to those arising in the special case of a surface which is generated by the principal normals to a given curve, except that the curvature and torsion are geodetic. In addition it is possible to obtain in an elegant form the differential equation of the curved asymptotic lines and the expression for the mean curvature.


1981 ◽  
Vol 16 (2) ◽  
pp. 179-183 ◽  
Author(s):  
H. Blaine Lawson, Jr. ◽  
Renato de Azevedo Tribuzy

Author(s):  
Weiller F. C. Barboza ◽  
Eudes L. de Lima ◽  
Henrique F. de Lima ◽  
Marco Antonio L. Velásquez

We investigate the umbilicity of [Formula: see text]-dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field in the de Sitter space [Formula: see text] of index [Formula: see text]. We recall that a spacelike submanifold is said to be linear Weingarten when its mean curvature function [Formula: see text] and its normalized scalar curvature [Formula: see text] satisfy a linear relation of the type [Formula: see text], for some constants [Formula: see text]. Under suitable constraints on the values of [Formula: see text] and [Formula: see text], we apply a generalized maximum principle for a modified Cheng–Yau operator [Formula: see text] in order to show that such a spacelike submanifold must be either totally umbilical or isometric to a product [Formula: see text], where the factors [Formula: see text] are totally umbilical submanifolds of [Formula: see text] which are mutually perpendicular along their intersections. Moreover, we also study the case in which these spacelike submanifolds are [Formula: see text]-parabolic.


1983 ◽  
pp. 141-145
Author(s):  
H. BLAINE LAWSON ◽  
RENATO DE AZEVEDO TRIBUZY

Sign in / Sign up

Export Citation Format

Share Document