Spatial frequency characteristics of nearby neurons in cats’ visual cortex

2007 ◽  
Vol 418 (3) ◽  
pp. 242-247 ◽  
Author(s):  
Stéphane Molotchnikoff ◽  
Pierre-Camille Gillet ◽  
Svetlana Shumikhina ◽  
Marilyn Bouchard
1976 ◽  
Vol 16 (8) ◽  
pp. 789-797 ◽  
Author(s):  
V.D. Glezer ◽  
A.M. Cooperman ◽  
V.A. Ivanov ◽  
T.A. Tsherbach

1978 ◽  
Vol 18 (7) ◽  
pp. 887-889 ◽  
Author(s):  
V.D. Glezer ◽  
V.E. Gauzelman ◽  
T.A. Tsherbach ◽  
K.N. Dudkin

2019 ◽  
Author(s):  
Marie Tolkiehn ◽  
Simon R. Schultz

AbstractOrientation tuning in mouse primary visual cortex (V1) has long been reported to have a random or “salt-and-pepper” organisation, lacking the structure found in cats and primates. Laminar in-vivo multi-electrode array recordings here reveal previously elusive structure in the representation of visual patterns in the mouse visual cortex, with temporo-nasally drifting gratings eliciting consistently highest neuronal responses across cortical layers and columns, whilst upward moving gratings reliably evoked the lowest activities. We suggest this bias in direction selectivity to be behaviourally relevant as objects moving into the visual field from the side or behind may pose a predatory threat to the mouse whereas upward moving objects do not. We found furthermore that direction preference and selectivity was affected by stimulus spatial frequency, and that spatial and directional tuning curves showed high signal correlations decreasing with distance between recording sites. In addition, we show that despite this bias in direction selectivity, it is possible to decode stimulus identity and that spatiotemporal features achieve higher accuracy in the decoding task whereas spike count or population counts are sufficient to decode spatial frequencies implying different encoding strategies.Significance statementWe show that temporo-nasally drifting gratings (i.e. opposite the normal visual flow during forward movement) reliably elicit the highest neural activity in mouse primary visual cortex, whereas upward moving gratings reliably evoke the lowest responses. This encoding may be highly behaviourally relevant, as objects approaching from the periphery may pose a threat (e.g. predators), whereas upward moving objects do not. This is a result at odds with the belief that mouse primary visual cortex is randomly organised. Further to this biased representation, we show that direction tuning depends on the underlying spatial frequency and that tuning preference is spatially correlated both across layers and columns and decreases with cortical distance, providing evidence for structural organisation in mouse primary visual cortex.


2012 ◽  
Vol 15 (12) ◽  
pp. 1683-1690 ◽  
Author(s):  
Ian Nauhaus ◽  
Kristina J Nielsen ◽  
Anita A Disney ◽  
Edward M Callaway

1973 ◽  
Vol 13 (7) ◽  
pp. 1255-1267 ◽  
Author(s):  
Lamberto Maffei ◽  
Adriana Fiorentini

Nature ◽  
1986 ◽  
Vol 321 (6067) ◽  
pp. 237-239 ◽  
Author(s):  
A. S. Ramoa ◽  
M. Shadlen ◽  
B. C. Skottun ◽  
R. D. Freeman

Sign in / Sign up

Export Citation Format

Share Document