upward moving
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Weijie Sun ◽  
James Slavin ◽  
Anna Milillo ◽  
Ryan Dewey ◽  
Stefano Orsini ◽  
...  

Abstract At Mercury, several processes can release ions and neutrals out of the planet’s surface. Here we present enhancements of dayside planetary ions in the solar wind entry layer during flux transfer event (FTE) “showers” near Mercury’s northern magnetospheric cusp. In this entry layer, solar wind ions are accelerated and move downward (i.e. planetward) toward the cusps, which sputter upward-moving planetary ions within 1 minute. The precipitation rate is enhanced by an order of magnitude during FTE showers and the neutral density of the exosphere can vary by >10% due to this FTE-driven sputtering. These in situ observations of enhanced planetary ions in the entry layer likely correspond to an escape channel of Mercury’s planetary ions, and the large-scale variations of the exosphere observed on minute-timescales by ground-based telescopes. Comprehensive, future multi-point measurements made by BepiColombo will greatly enhance our understanding of the processes contributing to Mercury’s dynamic exosphere and magnetosphere.


Author(s):  
Priyanka Gautam ◽  
T I Eldho ◽  
B. S. Mazumder ◽  
M. R. Behera

This study investigates the turbulent flow characteristics around a complex pier (CP) with elliptical pile cap, for understanding the mechanics of flow responsible for current-induced scour. The velocity data are recorded using an acoustic Doppler velocimeter (ADV) for a Reynolds number of 67,745. This study gives mean velocities in horizontal and vertical planes, Reynolds stresses, turbulent kinetic energy, and spectral analysis around the CP, which are not addressed earlier. The streamwise spectra with vortex-shedding frequencies and corresponding Strouhal numbers are focused on three distinct regions generated by CP. The elliptical pile-cap shields the downward flow at the upstream of the column, and the upward-moving wakes at the downstream of the CP, responsible for the sediment entrainment around a pier. On comparison, the effect of perturbed flow around the CP is considerably less than that of the simple pier (SP), resulting in less scour around the CP with identical flow situations.


2020 ◽  
Vol 644 ◽  
pp. A158
Author(s):  
Ritesh Patel ◽  
Vaibhav Pant ◽  
Kalugodu Chandrashekhar ◽  
Dipankar Banerjee

Context. Coronal mass ejections (CMEs) are often observed to be accompanied by flare, current sheets, and plasmoids/plasma blobs. 2D and 3D numerical simulations and observations reported plasmoids moving upward as well as downward along the current sheet. Aims. We aim to investigate the properties of plasmoids observed in the current sheet formed after an X-8.3 flare and followed by a fast CME eruption on September 10, 2017 using extreme-ultraviolet (EUV) and white-light coronagraph images. The main goal is to understand the evolution of plasmoids in different spatio-temporal scales using existing ground- and space-based instruments. Methods. We identified the plasmoids manually and tracked them along the current sheet in the successive images of Atmospheric Imaging Assembly (AIA) taken at the 131 Å pass band and in running difference images of the white-light coronagraphs, K-Cor and LASCO/C2. The location and size of the plasmoids in each image were recorded and analyzed, covering the current sheet from the inner to outer corona. Results. We find that the observed current sheet has an Alfvén Mach number of 0.018−0.35. The fast reconnection is also accompanied by plasmoids moving upward and downward. We identified 20 downward-moving and 16 upward-moving plasmoids using AIA 131 Å images. In white-light coronagraph images, only upward-moving plasmoids are observed. Our analysis shows that the downward-moving plasmoids have an average width of 5.92 Mm, whereas upward-moving blobs have an average size of 5.65 Mm in the AIA field of view (FOV). The upward-moving plasmoids, when observed in the white-light images, have an average width of 64 Mm in the K-Cor, which evolves to a mean width of 510 Mm in the LASCO/C2 FOV. Upon tracking the plasmoids in successive images, we find that downward- and upward-moving plasmoids have average speeds of ∼272 km s−1 and ∼191 km s−1, respectively in the EUV channels of observation. The average speed of plasmoids increases to ∼671 km s−1 and ∼1080 km s−1 in the K-Cor and LASCO/C2 FOVs, respectively, implying that the plasmoids become super-Alfvénic when they propagate outward. The downward-moving plasmoids show an acceleration in the range of −11 km s−1 to over 8 km s−1. We also find that the null point of the current sheet is located at ≈1.15 R⊙, where bidirectional plasmoid motion is observed. Conclusions. The width distribution of plasmoids formed during the reconnection process is governed by a power law with an index of −1.12. Unlike previous studies, there is no difference in trend for small- and large-scale plasmoids. The evolution of width W of the plasmoids moving at an average speed V along the current sheet is governed by an empirical relation: V = 115.69W0.37. The presence of accelerating plasmoids near the neutral point indicates a longer diffusion region as predicted by MHD models.


Author(s):  
Hiroyuki Maehara ◽  
Yuta Notsu ◽  
Kousuke Namekata ◽  
Satoshi Honda ◽  
Adam F Kowalski ◽  
...  

Abstract In this paper, we present the results from spectroscopic and photometric observations of the M-type flare star YZ CMi in the framework of the Optical and Infrared Synergetic Telescopes for Education and Research (OISTER) collaborations during the Transiting Exoplanet Survey Satellite (TESS) observation period. We detected 145 white-light flares from the TESS light-curve and four Hα flares from the OISTER observations performed between 2019 January 16 and 18. Among them, three Hα flares were associated with white-light flares. However, one of them did not show clear brightening in the continuum; during this flare, the Hα line exhibited blue asymmetry which lasted for ∼60 min. The line-of-sight velocity of the blueshifted component is in the range from −80 to −100 km s−1. This suggests that there can be upward flows of chromospheric cool plasma even without detectable red/near-infrared (NIR) continuum brightening. By assuming that the blue asymmetry in the Hα line was caused by a prominence eruption on YZ CMi, we estimated the mass and kinetic energy of the upward-moving material to be 1016–1018 g and 1029.5–1031.5 erg, respectively. The estimated mass is comparable to expectations from the empirical relation between the flare X-ray energy and mass of upward-moving material for stellar flares and solar coronal mass ejections (CMEs). In contrast, the estimated kinetic energy for the non-white-light flare on YZ CMi is roughly two orders of magnitude smaller than that expected from the relation between flare X-ray energy and kinetic energy for solar CMEs. This could be understood by the difference in the velocity between CMEs and prominence eruptions.


2020 ◽  
Author(s):  
Georg Fischer ◽  
Ulrich Taubenschuss ◽  
David Pisa

<p>Saturn kilometric radiation (SKR) is thought to be created by the cyclotron maser instability along auroral magnetic field lines, where radio emissions are generated near the electron cyclotron frequency at the source. Using the Wideband Receiver (WBR) of the Cassini Radio and Plasma Wave Science (RPWS) instrument it was possible to create dynamic spectra of high temporal and spectral resolution. They display the radio wave intensity as a function of time and frequency with a temporal resolution of a fraction of a second and a spectral resolution of ~0.1 kHz. </p> <p>In these dynamic spectra one can find a plethora of various fine structures which we classify in the following way: We first simply distinguish between 0-dimensional structures (dots), 1-dimensional structures (lines), and 2-dimensional structures (areas). For areas we require a minimum extension of 5 seconds in time and 5 kHz in frequency. Our main focus is on the lines, where we again distinguish between the four classes of horizontal lines, vertical lines, and lines with a positive or a negative slope (going to higher or lower frequencies). For the latter two it is thought that they are related to downward or upward moving radiation sources, i.e. bunches of energetic electrons moving down or up along the magnetic field lines. Using these simple 6 classes (DOTS, HORZ, VERT, POSS, NEGS, AREA) it is already possible to classify about 80% of all spectra showing SKR. Unclassified spectra contain no clear linear elements and mostly consist of patchy structures with holes that do not fulfill the minimum size requirement (5 s, 5 kHz) to be classified as areas. Linear elements appear in about one third of the spectra in the frequency range from 100 kHz to 1 MHz. Some spectra can of course be mixed and show dots, lines and areas, but in our classification we prioritize lines over areas and dots. </p>


2020 ◽  
Author(s):  
Jiwoo Nam ◽  
Pisin Chen ◽  
Y.C. Chen ◽  
S.-Y. Hsu ◽  
J.-J. Huang ◽  
...  

2020 ◽  
pp. 1-11
Author(s):  
Yubing Cheng ◽  
Bin Cheng ◽  
Fei Zheng ◽  
Timo Vihma ◽  
Anna Kontu ◽  
...  

Abstract Snow and ice were monitored by thermistor-string-based Snow and Ice Mass Balance Array (SIMBA) in Lake Orajärvi in northern Finland. An existing automatic SIMBA-algorithm was further developed to derive air/snow, snow/ice and ice/water interfaces based on the SIMBA environment temperature (ET) profiles. The identified interfaces agreed with in situ observations made in 2011/12 winter season. The method was capable to identify upward-moving snow/ice interface that was also visible from SIMBA heating temperature (HT) profiles, which responds to differences in the thermal diffusivities of air, snow, ice and water. The SIMBA data obtained in winters 2017/18 and 2018/19 were used to investigate snow and ice mass balance. An upward-moving snow/ice interface was detected as a result of meteoric ice (snow ice and superimposed ice) formation. Snow contributed to granular lake ice formation up to 40–55% of the total ice thickness on the seasonal mean. Heavy snowfalls and low air temperature in early winter are favourable for granular ice formation. The seasonal mean snow depth on nearby land was 2.7–2.9 times of that on the lake. The estimation of freeboard from snow and ice mass-balance measurement is sensitive to the snow density. Accurate ice freeboard calculation is still a challenge.


Human activity recognition(HAR) is used to describe basic activities that humans are performing using the sensors that we have in smartphones. The data for this activity recognition is captured by various sensors of mobile phones or wristbands such as accelerometer, gyroscope and gravity sensors.HAR has grabbed the attention of various researchers due to its vast demand in the fields of sport training, security, entertainment health monitoring,computer vision and robotics. In this project we compare different machine learning and deep learning algorithms to find a better approach for HAR. The dataset comprises six activities i.e. walking, sleeping, sitting,moving upward, moving downwards and standing.In this demonstration we also showed confusion matrix,accuracy and multi log loss of various algorithms. With the help of accuracy, confusion matrix of algorithms we compare and determine the best approach for HAR. This will help in future research to map the activities of humans using one of the best approaches used


2020 ◽  
Author(s):  
Tomas Trewhela ◽  
Nico Gray ◽  
Christophe Ancey

<p>We studied granular flows of glass beads on an inclined conveyor channel. An upward-moving belt conveyed particles that flowed down the channel under the action of gravity, thus creating a stationary flow. To visualize the internal dynamics of the bulk, we relied on the refractive index matching technique. Under fixed slope and belt velocity, we ran mono- and bi-disperse experiments to characterize spatially and temporally the dynamics and concentration fields of these granular flows. Mono-disperse experiments were done using 6 and 8 mm beads on slopes of 10, 12, 15 and 18° and 3 different belt velocities. Beads of 14 mm were added in concentrations of 10, 20, 30 and 40% for the bi-disperse experiments. The rear part of the flow exhibited well-arranged particle layers that moved relatively between them. This particle arrangement ended with a sharp transition to the front of the flow and a dilated convective front. Bi-disperse experiments with low concentrations of large particles conserved the same layered-convective regime with the few added large beads confined to the convective front, a result of size segregation. When the concentration of large beads was increased to 30%, the described regime disappeared. Large grains were frequently dragged back by the belt, thus disrupting the arrangement of particle layers. A quasi-stationary behavior was observed in these experiments, small particles migrated to the front of the flow in pulses that after a while were dragged back, repeating the cycle. We observed that particle concentration fields, on average, were consistent with the structures observed for the  breaking size-segregation wave phenomenon. The effective basal friction, local concentrations and dilation, among other variables, are responsible for these phenomena.</p>


Sign in / Sign up

Export Citation Format

Share Document