Intensification of aridity in the eastern margin of the Tibetan Plateau since 300ka BP inferred from loess-soil sequences, western Sichuan Province, southwest China

2014 ◽  
Vol 414 ◽  
pp. 192-199 ◽  
Author(s):  
Yansong Qiao ◽  
Lin Qi ◽  
Zongxiu Liu ◽  
Yan Wang ◽  
Haitao Yao ◽  
...  
2020 ◽  
Author(s):  
Wan-Ching Chang-Chien ◽  
Chih-Tung Chen ◽  
Xi-Bin Tan

<p>      The Tibetan Plateau, resulting from the active Eurasian-India collision, presents a major scientific challenge in understanding its growth and propagation. One key region is the Longmen Shan mountain belt in western Sichuan, which forms the steepest margin of the plateau and has been active as demonstrated by the Mw 7.9 Wenchuan (2008) and Mw 6.6 Lushan (2013) earthquakes. Tectonic history of the Longmen Shan belt and the neighboring Songpan-Garze terrane, however, began in the Triassic Indosinian orogenesis, which complicates the geologic records. But the major thickening of Tibet was formed in Himalayan orogenesis. Therefore, quantitative constraints on the pre-Tertiary tectonic evolution of the region are crucial in delineating Himalayan geodynamics. In this study, the raman spectroscopy of carbonaceous material (RSCM) geothermometer is applied to the metasediments of the Longmen Shan and Sonpan-Garze terrane to obtain their peak metamorphic states. Combining existing metamorphic, geochronologic and thermochronologic data, better rock thermal histories may be reconstructed, providing insights to the structure and development of the orogenic system.</p><p>      In this study, 50 samples were collected in eastern margin of Tibetan Plateau along several transects in NW-SE direction, perpendicular to the structural grain of the Longmen Shan and into the Songpan-Garze terrane. Together with existing data, distribution of the peak temperatures from RSCM analyses is not correlated to later igneous intrusions, ruling out significant contact metamorphism overprint. Along the WenChuan Fault, the Songpan-Garze terrane is of higher grade than the Longmen Shan, indicating it is a major reverse shear zone. The rather high RSCM temperatures (over 500 °C) acquired from Songpan-Garze metasediments are inconsistent with past models as remnants of a classical accretionary prism; the complex wedge kinematics involving significant basal accretion observed in the slate belt of Taiwan orogen may give clues in reconstructing the structure and evolution of eastern Tibetan Plateau.</p><p>Keywords: Tibetan Plateau; Longmen Shan; RSCM geothermometer</p>


2014 ◽  
Vol 396 ◽  
pp. 88-96 ◽  
Author(s):  
Mong-Han Huang ◽  
Roland Bürgmann ◽  
Andrew M. Freed

2017 ◽  
Vol 71 (1) ◽  
Author(s):  
Elisabeth Hsu ◽  
Franz K. Huber ◽  
Caroline S. Weckerle

AbstractThe Shuhi of Muli County, Sichuan Province, are one of multiple ethnic groups inhabiting the river gorges of the Qinghai-Gansu-Sichuan corridor between the Tibetan plateau and the Chinese lowlands. The Shuhi have grown paddy rice since times immemorial at an unusually high altitude (ca. 2,300 m above sea level). This article aims to explain this conundrum not merely through the ecology (as is common among Tibetan area specialists), but by researching the cultivation and consumption of rice as a historically-evolved cultural practice. According to a recently formulated agro-archaeological hypothesis regarding the macro-region of Eurasia, it is possible to identify two supra-regional culture complexes distinguished by their respective culinary technologies: rice-boiling versus wheat-grinding-and-baking. The hypothesis posits that the fault line between the two supra-regional cultural complexes is precisely along this river gorges corridor. In this article we provide support for this hypothesis arguing that Shuhi ritual and kinship practices have much affinity with those of other rice-boiling peoples in Southeast Asia, whereas certain of their current religious practices are shared with the wheat-grinding Tibetans.


Sign in / Sign up

Export Citation Format

Share Document