In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand

2010 ◽  
Vol 5 (4) ◽  
pp. 392-409 ◽  
Author(s):  
A.E. Putnam ◽  
J.M. Schaefer ◽  
D.J.A. Barrell ◽  
M. Vandergoes ◽  
G.H. Denton ◽  
...  
2002 ◽  
Vol 195 (3-4) ◽  
pp. 185-193 ◽  
Author(s):  
James Jackson ◽  
Jean-François Ritz ◽  
Lionel Siame ◽  
Grant Raisbeck ◽  
Françoise Yiou ◽  
...  

2015 ◽  
Vol 30 ◽  
pp. 54-68 ◽  
Author(s):  
L.C.P. Martin ◽  
P.-H. Blard ◽  
J. Lavé ◽  
R. Braucher ◽  
M. Lupker ◽  
...  

2021 ◽  
Author(s):  
◽  
Julia Anne Collins

<p>Cosmogenic nuclides are an important tool in quantifying many Earth-surface processes. Beryllium-10 (¹⁰Be) is commonly extracted out of the mineral quartz; however many landscapes lack quartz bearing rocks. In order to establish a new chronometer based on ¹⁰Be in pyroxene for use in New Zealand and Antarctica, it is necessary to verify cleaning protocols and determine a local production rate. In this study, I have tested and modified an existing pyroxene decontamination procedure in order to further develop the use of ¹⁰Be in pyroxene as a chronometer. This method successfully removes the meteoric component of ¹⁰Be in pyroxene, allowing only the concentration of in situ produced ¹⁰Be to be measured. Additionally, production rates for ¹⁰Be in pyroxene have been determined empirically for New Zealand using cross-calibration with measured ³He concentrations and an independent radiocarbon age of the Murimotu debris avalanche in the central North Island, New Zealand of 10.6 ± 1.1 ka. Theoretical ¹⁰Be pyroxene production rates were also determined, based on the composition of the Murimotu pyroxene. The best estimate for the 10Be pyroxene production rate is 3.4 ± 0.8 atoms g⁻¹ yr⁻¹ at sea-level high latitude, which was determined via cross-calibration with the radiocarbon age for the deposit. This work shows that production rates for ¹⁰Be in pyroxene are both empirically and theoretically 8-27% lower than in quartz. The ³He/¹⁰Be ratio in the Murimotu pyroxene is 34.5 ± 9.9; this is indistinguishable from global ³He-pyroxene/¹⁰Be-quartz production ratios.  In a case study surface exposure ages were determined for bedrock samples and cobble erratics collected in a vertical transect on Mount Gran, Antarctica, by applying the aforementioned ¹⁰Be pyroxene decontamination procedure and radiocarbon derived production rates. A chronology for ice surface lowering was obtained for the adjacent Mackay Glacier, indicating the ice surface lowered approximately 60 m during a relatively rapid episode of thinning which occurred between ~13.5 ka and 11 ka.  This thesis presents a successful test of decontamination procedures, new production rates, and an example application, showing the promise of ¹⁰Be in pyroxene as a chronometer. The development of ¹⁰Be in pyroxene allows environments without quartz-bearing rocks to be dated using this widely used nuclide. The pairing of ¹⁰Be with ³He in pyroxene would allow complex exposure histories to be determined, expanding the application.</p>


2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Stefan Winkler

AbstractThis study provides the first attempt to combine terrestrial (in situ) cosmogenic nuclide (10Be) surface exposure dating with Schmidt hammer relative-age dating for the age estimation of Holocene moraines at Strauchon Glacier, Southern Alps, New Zealand. Numerous Schmidt hammer tests enable a multi-ridged lateral moraine system to be related to three late-Holocene ‘Little Ice Age’-type events. On the basis of cosmogenic 10Be ages, those events are dated to c. 2400, 1700, and 1100 years ago. Linear age-calibration curves are constructed in order to relate Schmidt hammer R-values to cosmogenic 10Be ages. The high explanation yielded reveals the causal link between both data sets. The potential of combining both methods in a ‘’multiproxy approach’ is discussed alongside possible future improvements. Terrestrial cosmogenic nuclide dating delivers absolute ages needed as fixed points for Schmidt hammer age-calibration curves. The Schmidt hammer technique can be used to crosscheck the boulder surfaces chosen for surface exposure dating by terrestrial cosmogenic nuclides. It should, therefore, reduce the number of samples necessary and costs.


2011 ◽  
Vol 309 (1-2) ◽  
pp. 21-32 ◽  
Author(s):  
Michael R. Kaplan ◽  
Jorge A. Strelin ◽  
Joerg M. Schaefer ◽  
George H. Denton ◽  
Robert C. Finkel ◽  
...  

2018 ◽  
Vol 48 ◽  
pp. 121-132 ◽  
Author(s):  
Shaun R. Eaves ◽  
Julia A. Collins ◽  
R. Selwyn Jones ◽  
Kevin P. Norton ◽  
Stephen G. Tims ◽  
...  

2021 ◽  
Author(s):  
◽  
Julia Anne Collins

<p>Cosmogenic nuclides are an important tool in quantifying many Earth-surface processes. Beryllium-10 (¹⁰Be) is commonly extracted out of the mineral quartz; however many landscapes lack quartz bearing rocks. In order to establish a new chronometer based on ¹⁰Be in pyroxene for use in New Zealand and Antarctica, it is necessary to verify cleaning protocols and determine a local production rate. In this study, I have tested and modified an existing pyroxene decontamination procedure in order to further develop the use of ¹⁰Be in pyroxene as a chronometer. This method successfully removes the meteoric component of ¹⁰Be in pyroxene, allowing only the concentration of in situ produced ¹⁰Be to be measured. Additionally, production rates for ¹⁰Be in pyroxene have been determined empirically for New Zealand using cross-calibration with measured ³He concentrations and an independent radiocarbon age of the Murimotu debris avalanche in the central North Island, New Zealand of 10.6 ± 1.1 ka. Theoretical ¹⁰Be pyroxene production rates were also determined, based on the composition of the Murimotu pyroxene. The best estimate for the 10Be pyroxene production rate is 3.4 ± 0.8 atoms g⁻¹ yr⁻¹ at sea-level high latitude, which was determined via cross-calibration with the radiocarbon age for the deposit. This work shows that production rates for ¹⁰Be in pyroxene are both empirically and theoretically 8-27% lower than in quartz. The ³He/¹⁰Be ratio in the Murimotu pyroxene is 34.5 ± 9.9; this is indistinguishable from global ³He-pyroxene/¹⁰Be-quartz production ratios.  In a case study surface exposure ages were determined for bedrock samples and cobble erratics collected in a vertical transect on Mount Gran, Antarctica, by applying the aforementioned ¹⁰Be pyroxene decontamination procedure and radiocarbon derived production rates. A chronology for ice surface lowering was obtained for the adjacent Mackay Glacier, indicating the ice surface lowered approximately 60 m during a relatively rapid episode of thinning which occurred between ~13.5 ka and 11 ka.  This thesis presents a successful test of decontamination procedures, new production rates, and an example application, showing the promise of ¹⁰Be in pyroxene as a chronometer. The development of ¹⁰Be in pyroxene allows environments without quartz-bearing rocks to be dated using this widely used nuclide. The pairing of ¹⁰Be with ³He in pyroxene would allow complex exposure histories to be determined, expanding the application.</p>


2018 ◽  
Author(s):  
Lee B. Corbett ◽  
◽  
Paul R. Bierman ◽  
Jeremy D. Shakun ◽  
P. Thompson Davis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document