scholarly journals Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum

2014 ◽  
Vol 100 ◽  
pp. 55-86 ◽  
Author(s):  
Robert D. Larter ◽  
John B. Anderson ◽  
Alastair G.C. Graham ◽  
Karsten Gohl ◽  
Claus-Dieter Hillenbrand ◽  
...  
2014 ◽  
Vol 122 ◽  
pp. 224-237 ◽  
Author(s):  
James A. Smith ◽  
Claus-Dieter Hillenbrand ◽  
Gerhard Kuhn ◽  
Johann Phillip Klages ◽  
Alastair G.C. Graham ◽  
...  

1990 ◽  
Vol 14 ◽  
pp. 115-119 ◽  
Author(s):  
Philippe Huybrechts

A complete three-dimensional thermo-mechanical ice-shect model for the entire Antarctic ice sheet, including an ice shelf, grounding line-dynamics and isostatic bed adjustment, is employed to simulate the response of the ice sheet during the last glacial-interglacial cycle with respect to changing environmental conditions. To do this, the Vostok temperature signal is used to force changes in surface temperature and accumulation rate and sea level prescribed by a piecewise linear sawtooth function. Model calculations started at 160 ka B.P. In line with glacial geological evidence, the most pronounced fluctuations are found in the West Antarctic ice sheet and appear to be essentially controlled by changes in eustatic sea level. Grounding occurs more readily in the Weddell Sea than in the Ross Sea and, due to the long time scales involved, the ice sheet does not reach its full glacial extent until 16 ka B.p. The concomitant disintegration of the West Antarctic ice sheet is triggered by a rise in sea level and takes around 6000 years to complete. The ice sheet then halts close to the present state and no collapse takes place. This Holocene deglaciation appears to have added 6–8 million km3 of ice to the world oceans, corresponding with an Antarctic contribution to world-wide sea level of 12–15 m.


1990 ◽  
Vol 14 ◽  
pp. 115-119 ◽  
Author(s):  
Philippe Huybrechts

A complete three-dimensional thermo-mechanical ice-shect model for the entire Antarctic ice sheet, including an ice shelf, grounding line-dynamics and isostatic bed adjustment, is employed to simulate the response of the ice sheet during the last glacial-interglacial cycle with respect to changing environmental conditions. To do this, the Vostok temperature signal is used to force changes in surface temperature and accumulation rate and sea level prescribed by a piecewise linear sawtooth function. Model calculations started at 160 ka B.P. In line with glacial geological evidence, the most pronounced fluctuations are found in the West Antarctic ice sheet and appear to be essentially controlled by changes in eustatic sea level. Grounding occurs more readily in the Weddell Sea than in the Ross Sea and, due to the long time scales involved, the ice sheet does not reach its full glacial extent until 16 ka B.p. The concomitant disintegration of the West Antarctic ice sheet is triggered by a rise in sea level and takes around 6000 years to complete. The ice sheet then halts close to the present state and no collapse takes place. This Holocene deglaciation appears to have added 6–8 million km3 of ice to the world oceans, corresponding with an Antarctic contribution to world-wide sea level of 12–15 m.


2022 ◽  
pp. 623-687
Author(s):  
Martin Siegert ◽  
Andrew S. Hein ◽  
Duanne A. White ◽  
Damian B. Gore ◽  
Laura De Santis ◽  
...  

2020 ◽  
Author(s):  
Donald Blankenship ◽  
Enrica Quatini ◽  
Duncan Young

<p>A combination of aerogeophysics, seismic observations and direct observation from ice cores and subglacial sampling has revealed at least 21 sites under the West Antarctic Ice sheet consistent with active volcanism (where active is defined as volcanism that has interacted with the current manifestation of the West Antarctic Ice Sheet). Coverage of these datasets is heterogenous, potentially biasing the apparent distribution of these features. Also, the products of volcanic activity under thinner ice characterized by relatively fast flow are more prone to erosion and removal by the ice sheet, and therefore potentially underrepresented. Unsurprisingly, the sites of active subglacial volcanism we have identified often overlap with areas of relatively thick ice and slow ice surface flow, both of which are critical conditions for the preservation of volcanic records. Overall, we find the majority of active subglacial volcanic sites in West Antarctica concentrate strongly along the crustal thickness gradients bounding the central West Antarctic Rift System, complemented by intra-rift sites associated with the Amundsen Sea to Siple Coast lithospheric transition.</p>


2014 ◽  
Vol 100 ◽  
pp. 10-30 ◽  
Author(s):  
Andrew N. Mackintosh ◽  
Elie Verleyen ◽  
Philip E. O'Brien ◽  
Duanne A. White ◽  
R. Selwyn Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document