Annals of Glaciology
Latest Publications


TOTAL DOCUMENTS

5494
(FIVE YEARS 152)

H-INDEX

87
(FIVE YEARS 4)

Published By Cambridge University Press

1727-5644, 0260-3055

2021 ◽  
pp. 1-1
Author(s):  
Joseph M. Souney ◽  
Mark S. Twickler ◽  
Murat Aydin ◽  
Eric J. Steig ◽  
T. J. Fudge ◽  
...  
Keyword(s):  
Ice Core ◽  

2021 ◽  
pp. 1-7
Author(s):  
Akane Tsushima ◽  
Morihiro Miyahara ◽  
Tetsuhide Yamasaki ◽  
Nao Esashi ◽  
Yota Sato ◽  
...  

Abstract We drilled an 81.2-m-long ice core in the accumulation area (5860 m a.s.l.) of Trambau Glacier in the Rolwaling region during October–November 2019. The drilling operation was conducted with a lightweight electro-mechanical drill system after two reconnaissance fieldworks in 2017 and 2018, during which two shallow firn cores were drilled with a hand auger. The drill system and ice core samples were transported by helicopters at a high elevation of 6000 m a.s.l. A further challenging issue was the ice core transportation between Nepal and Japan, as no regular commercial flight was available for the frozen samples. The addition of dry ice imported from India immediately prior to leaving Nepal allowed the ice core samples to be successfully transported to a cold room in Japan, and remain in a frozen state. Stratigraphic observations during the drilling operation suggest the drill site has been affected by melting and refreezing.


2021 ◽  
pp. 1-11
Author(s):  
Aleksey Markov ◽  
Pavel Talalay ◽  
Mikhail Sysoev ◽  
Andrey Miller ◽  
Alexander Cherepakhin

Abstract This article presents the main aspects of the design solutions (based on the application of sensors MEMS and cantilevers), testing and applying of the multi-functional borehole logger ANTTIC (Antarctic Thermo-barometer, Inclinometer, Caliper) for geophysical high-precision monitoring (when simultaneous registering of temperature, pressure, axis inclination angle and radii of borehole cross-sections at 12 points), which is designed specifically for ultra-low temperatures and ultra-high pressures, and to determine an elliptical borehole shape and registration anisotropy factor in deep ice boreholes in the central region of Eastern Antarctica, in the areas of dome A at the Kunlun station (China) and/or of lake Vostok at the Vostok station (Russia).


2021 ◽  
pp. 1-14
Author(s):  
Yazhou Li ◽  
Pavel G. Talalay ◽  
Xiaopeng Fan ◽  
Bing Li ◽  
Jialin Hong

Abstract Hot-point drills have been widely used for drilling boreholes in glaciers, ice caps and ice sheets. A hot-point drill melts ice through the thermal head at its bottom end. Penetration occurs through a close-contact melting (CCM) process, in which the ice is melted, and the meltwater is squeezed out by the exerted force applied on the thermal head. During the drilling, a thin water film is formed to separate the thermal head from the surrounding ice. For the hot-point drill, the rate of penetration (ROP) is influenced by several variables, such as thermal head shape, buoyancy corrected force (BCF), thermal head power (or temperature) and ice temperature. In this study, we developed a model to describe the CCM process, where a constant power or temperature on the working surface of a thermal head is assumed. The model was developed using COMSOL Multiphysics 5.3a software to evaluate the effects of different variables on the CCM process. It was discovered that the effect of thermal head shape and the cone angle of conical thermal head on ROP is less significant, whereas the increase in the BCF and the power (or temperature) of the thermal head can continuously enhance the ROP.


2021 ◽  
pp. 1-1
Author(s):  
Dustin M. Schroeder ◽  
Robert G. Bingham ◽  
Donald D. Blankenship ◽  
Knut Christianson ◽  
Olaf Eisen ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
John W. Goodge ◽  
Jeffrey P. Severinghaus ◽  
Jay Johnson ◽  
Delia Tosi ◽  
Ryan Bay

Abstract Rapid Access Ice Drill is a new drilling technology capable of quickly accessing the glacial bed of Antarctic ice sheets, retrieving ice core and rock core samples, and providing boreholes for downhole logging of physical properties. Scientific goals include searching for old ice near the glacial bed and sampling subglacial bedrock. During field trials near McMurdo Station on a piedmont glacier at Minna Bluff in the 2019–20 austral summer, we successfully completed a ‘top-to-bottom’ operational sequence in three boreholes by (1) augering through firn, (2) creating a borehole packer seal in non-porous ice, (3) establishing fluid circulation, (4) quickly drilling a borehole in ice at penetration rates up to 1.2 m min−1, (5) acquiring a short ice core at depth, (6) penetrating the glacial bed at a depth of ~677 m, (7) recovering a 3.2 m core of ice, basal till and subglacial bedrock, (8) optically logging the borehole on wireline, (9) testing hydrofracture potential by overpressuring the borehole fluid and (10) operating in an environmentally benign yet rapid field mode. Minna Bluff testing, therefore, demonstrates the effectiveness of this integrated system to drill rapidly through thick ice and penetrate across the glacial bed to take cores of bedrock.


2021 ◽  
pp. 1-13
Author(s):  
John C. Priscu ◽  
Jonas Kalin ◽  
John Winans ◽  
Timothy Campbell ◽  
Matthew R. Siegfried ◽  
...  

Abstract The Subglacial Antarctic Lakes Scientific Access (SALSA) Project accessed Mercer Subglacial Lake using environmentally clean hot-water drilling to examine interactions among ice, water, sediment, rock, microbes and carbon reservoirs within the lake water column and underlying sediments. A ~0.4 m diameter borehole was melted through 1087 m of ice and maintained over ~10 days, allowing observation of ice properties and collection of water and sediment with various tools. Over this period, SALSA collected: 60 L of lake water and 10 L of deep borehole water; microbes >0.2 μm in diameter from in situ filtration of ~100 L of lake water; 10 multicores 0.32–0.49 m long; 1.0 and 1.76 m long gravity cores; three conductivity–temperature–depth profiles of borehole and lake water; five discrete depth current meter measurements in the lake and images of ice, the lake water–ice interface and lake sediments. Temperature and conductivity data showed the hydrodynamic character of water mixing between the borehole and lake after entry. Models simulating melting of the ~6 m thick basal accreted ice layer imply that debris fall-out through the ~15 m water column to the lake sediments from borehole melting had little effect on the stratigraphy of surficial sediment cores.


2021 ◽  
pp. 1-13
Author(s):  
Robert Mulvaney ◽  
Julius Rix ◽  
Scott Polfrey ◽  
Mackenzie Grieman ◽  
Carlos Martìn ◽  
...  

Abstract To understand the long-term climate and glaciological evolution of the ice sheet in the region bordering the Weddell Sea, the British Antarctic Survey has undertaken a series of successful ice core projects drilling to bedrock on Berkner Island, James Ross Island and the Fletcher Promontory. A new project, WACSWAIN, seeks to increase this knowledge by further drilling to bedrock on two further ice rises in this region. In a single-season project, an ice core was recovered to bedrock at 651 m on Skytrain Ice Rise using an ice core drill in a fluid-filled borehole. In a second season, a rapid access drill was used to recover ice chips to 323 m on Sherman Island in a dry borehole, though failing to reach the bedrock which was at an estimated depth of 428 m.


Sign in / Sign up

Export Citation Format

Share Document