Recurring types of variability and transitions in the ∼620 kyr record of climate change from the Chew Bahir basin, southern Ethiopia

2021 ◽  
pp. 106777
Author(s):  
Martin H. Trauth ◽  
Asfawossen Asrat ◽  
Andrew S. Cohen ◽  
Walter Duesing ◽  
Verena Foerster ◽  
...  
2021 ◽  
Author(s):  
Dessalegn Anshiso Sedebo ◽  
Gu‐Cheng Li ◽  
Kidane Assefa Abebe ◽  
Bekele Gebisa Etea ◽  
John Kojo Ahiapka ◽  
...  

2014 ◽  
Vol 130 ◽  
pp. 23-34 ◽  
Author(s):  
Bekele Megersa ◽  
André Markemann ◽  
Ayana Angassa ◽  
Joseph O. Ogutu ◽  
Hans-Peter Piepho ◽  
...  

Climate ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 70 ◽  
Author(s):  
Tafesse Matewos

Different factors control the types of adaptive strategies and likelihoods of experiencing climate change-induced impacts by smallholder farmers. By using a mixed research method, this study examines the types and determinants of climate change-induced impacts on smallholder rural farmers in drought-prone low lands of Sidama, Southern Ethiopia. Randomly selected (401) households were surveyed on climate change-induced impacts. Longitudinal climatic data were also collected from the Ethiopian National Meteorological Agency to assess the trend of rainfall (RF), temperature and drought incidents. The analyses of the data revealed that RF and temperature had shown decreasing and increasing trends, respectively, during the three decades under consideration (1983–2014). These changes in RF and temperature exposed farmers to climate-related epidemics, drought, harvest loss, and hunger. The logit model results revealed that different factors control the likelihood of exposure to climate change-induced impacts. The findings revealed that literacy level, involving women in family decisions and farmers’ involvement in adaptation planning, reduces the likelihood of exposure to climate change-induced hunger. Therefore, there is a need to work on human capital of the farmers through expanding education, strengthening women’s participation in family decision-making, and by improving public participation in climate change adaptation undertakings to minimize climate change-induced impacts.


2020 ◽  
Author(s):  
Frank Schäbitz ◽  
Verena Foerster ◽  
Asfawossen Asrat ◽  
Andrew S. Cohen ◽  
Melissa S. Chapot ◽  
...  

<p><span>Humans </span><span>have been adapting to more demanding habitats in the course of their evolutionary history</span><span>. </span><span>Nevertheless</span><span>, environmental changes coupled with overpopulation naturally limit competition for resources. In order to find such limits, reconstructions of climate and </span><span>population changes </span><span>are increasingly used for the continent of our origin, Africa.</span> <span>However, </span><span>continuous and high-resolution records of climate-human interactions are still scarce. </span></p><p><span>Using a 280 m sediment core from Chew Bahir*, a wide tectonic basin in southern Ethiopia,</span> <span>we reconstruct the paleoenvironmental conditions during the development of <em>Homo sapiens.</em> The complete multiproxy record of the composite core covers the last ~600 ka </span><span>, allowing tests of hypotheses about the influence of climate change on human evolution and technological innovation from the Late Acheulean to the Middle/Late Stone Age, and on dispersal within and out of Africa</span><span>. </span></p><p><span>Here we present results from the uppermost 100 meters of the Chew Bahir core, spanning the last 200 kiloyears (ka). </span><span>The record shows two modes of environmental change that are associated with two types of human mobility. The first mode is a long-term trend towards a more arid climate, overlain by precession-driven wet-dry alternation. Through comparison with the archaeological record, humid episodes appear to have led to the opening of ‘green’ networks between favourable habitats and thus to increased human mobility on a regional scale. The second mode of environmental change resembles millennial-scale Dansgaard-Oeschger and Heinrich events, which seem to coincide with enhanced vertical mobility from the Ethiopian rift to the highlands, especially in the time frame between ~65–21 ka BP. The coincidence of climate change and human mobility patterns help to define the limiting conditions for early <em>Homo sapiens</em> in eastern Africa.</span></p><p><span>___________________</span></p><p><span>*</span> <span>cored in the context of HSPDP (<em>Hominin Sites and Paleolakes Drilling Project</em>) and CRC </span><span>(<em>Collaborative Research </em><em>Centre</em>) 806 “<em>Our way to Europe</em>”</span></p>


Sign in / Sign up

Export Citation Format

Share Document