scholarly journals Playing with ghosts in a Dynkin game

2020 ◽  
Vol 130 (10) ◽  
pp. 6133-6156
Author(s):  
Tiziano De Angelis ◽  
Erik Ekström
Keyword(s):  



2017 ◽  
Vol 27 (3) ◽  
pp. 1702-1755 ◽  
Author(s):  
Erhan Bayraktar ◽  
Song Yao
Keyword(s):  


2020 ◽  
Vol 9 (2) ◽  
pp. 459-470
Author(s):  
Helin Wu ◽  
Yong Ren ◽  
Feng Hu

Abstract In this paper, we investigate some kind of Dynkin game under g-expectation induced by backward stochastic differential equation (short for BSDE). The lower and upper value functions $$\underline{V}_t=ess\sup \nolimits _{\tau \in {\mathcal {T}_t}} ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$ V ̲ t = e s s sup τ ∈ T t e s s inf σ ∈ T t E t g [ R ( τ , σ ) ] and $$\overline{V}_t=ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}} ess\sup \nolimits _{\tau \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$ V ¯ t = e s s inf σ ∈ T t e s s sup τ ∈ T t E t g [ R ( τ , σ ) ] are defined, respectively. Under some suitable assumptions, a pair of saddle points is obtained and the value function of Dynkin game $$V(t)=\underline{V}_t=\overline{V}_t$$ V ( t ) = V ̲ t = V ¯ t follows. Furthermore, we also consider the constrained case of Dynkin game.







2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Atsuo Suzuki ◽  
Katsushige Sawaki

We deal with the pricing of callable Russian options. A callable Russian option is a contract in which both of the seller and the buyer have the rights to cancel and to exercise at any time, respectively. The pricing of such an option can be formulated as an optimal stopping problem between the seller and the buyer, and is analyzed as Dynkin game. We derive the value function of callable Russian options and their optimal boundaries.



Sign in / Sign up

Export Citation Format

Share Document