Minimizing the sum of makespan on multi-agent single-machine scheduling with release dates

Author(s):  
Xinyue Wang ◽  
Tao Ren ◽  
Danyu Bai ◽  
Chinenye Ezeh ◽  
Haodong Zhang ◽  
...  
2015 ◽  
Vol 21 (3) ◽  
pp. 805-816 ◽  
Author(s):  
Du-Juan Wang ◽  
Yunqiang Yin ◽  
Wen-Hsiang Wu ◽  
Wen-Hung Wu ◽  
Chin-Chia Wu ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Wencheng Wang ◽  
Xiaofei Liu

In this paper, we consider parallel-machine scheduling with release times and submodular penalties (P|rj,reject|Cmax+π(R)), in which each job can be accepted and processed on one of m identical parallel machines or rejected, but a penalty must paid if a job is rejected. Each job has a release time and a processing time, and the job can not be processed before its release time. The objective of P|rj,reject|Cmax+π(R) is to minimize the makespan of the accepted jobs plus the penalty of the rejected jobs, where the penalty is determined by a submodular function. This problem generalizes a multiprocessor scheduling problem with rejection, the parallel-machine scheduling with submodular penalties, and the single machine scheduling problem with release dates and submodular rejection penalties. In this paper, inspired by the primal-dual method, we present a combinatorial 2-approximation algorithm to P|rj,reject|Cmax+π(R). This ratio coincides with the best known ratio for the parallel-machine scheduling with submodular penalties and the single machine scheduling problem with release dates and submodular rejection penalties.


Sign in / Sign up

Export Citation Format

Share Document