dependent setup times
Recently Published Documents


TOTAL DOCUMENTS

558
(FIVE YEARS 133)

H-INDEX

49
(FIVE YEARS 7)

2022 ◽  
Vol 12 (2) ◽  
pp. 607
Author(s):  
Fredy Juárez-Pérez ◽  
Marco Antonio Cruz-Chávez ◽  
Rafael Rivera-López ◽  
Erika Yesenia Ávila-Melgar ◽  
Marta Lilia Eraña-Díaz ◽  
...  

In this paper, a hybrid genetic algorithm implemented in a grid environment to solve hard instances of the flexible flow shop scheduling problem with sequence-dependent setup times is introduced. The genetic algorithm takes advantage of the distributed computing power on the grid to apply a hybrid local search to each individual in the population and reach a near optimal solution in a reduced number of generations. Ant colony systems and simulated annealing are used to apply a combination of iterative and cooperative local searches, respectively. This algorithm is implemented using a master–slave scheme, where the master process distributes the population on the slave process and coordinates the communication on the computational grid elements. The experimental results point out that the proposed scheme obtains the upper bound in a broad set of test instances. Also, an efficiency analysis of the proposed algorithm indicates its competitive use of the computational resources of the grid.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Jiamin Zhang ◽  
Jiarui Zhang

Trains can be optimally spread over the period of the cyclic timetable. By integrating sequencing issue with headway time together, this paper studies the structure optimization of mixed-speed train traffic for a cyclic timetable. Firstly, by taking it as a job-shop problem with sequence-dependent setup times on one machine, in the type of infinite capacity resource with headway (ICR + H), the problem is transformed to alternative graph (AG) and then recast to the mixed-speed train traffic planning (MSTTP) model. For the multiobjective in MSTTP, three indicators are optimized, i.e., heterogeneity, cycle time, and buffer time, which correspond to diversity of train service toward passenger, capacity consumption of rail network, and stability of train operation, respectively. Secondly, the random-key genetic algorithm (RKGA) is proposed to tackle the sequence and headway simultaneously. Finally, RKGA is coded with visual studio C# and the proposed method is validated with a case study. The rail system considered is a line section encompassing a territory of 180 km with 15 mixed-speed trains in each cycle of the timetable. Results indicate the comprehensively balanced train plan for all stakeholders from random variations of train sequence and headway time. Both the quantitative proportion of heterogeneity/homogeneity (e.g., 2.5) about the optimized distribution of the mixed train traffic and the link between train headway time and the sequence for each traffic scenario are found. All the findings can be used to arrange the mixed-speed train traffic more scientifically.


2022 ◽  
Vol 13 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Massimo Pinto Antonioli ◽  
Carlos Diego Rodrigues ◽  
Bruno de Athayde Prata

This paper aims at presenting a customer order scheduling environment in which the setup times are explicit and depend on the production sequence. The considered objective function is the total tardiness minimization. Since the variant under study is NP-hard, we propose a mixed-integer linear programming (MILP) model, an adaptation of the Order-Scheduling Modified Due-Date heuristic (OMDD) (referred to as Order-Scheduling Modified Due-Date Setup (OMMD-S)), an adaptation of the Framinan and Perez-Gonzalez heuristic (FP) (hereinafter referred to as Framinan and Perez-Gonzalez Setup (FP-S)), a matheuristic with Same Permutation in All Machines (SPAM), and the hybrid matheuristic SPAM-SJPO based on Job-Position Oscillation (JPO). The algorithms under comparison have been compared on an extensive benchmark of randomly generated test instances, considering two performance measures: Relative Deviation Index (RDI) and Success Rate (SR). For the small-size evaluated instances, the SPAM is the most efficient algorithm, presenting the better values of RDI and SR. For the large-size evaluated instances, the hybrid matheuristic SPAM-JPO and MILP model are the most efficient methods.


2021 ◽  
Author(s):  
Shih-Wei Lin ◽  
Kuo-Ching Ying

Abstract Sequence-dependent setup times (SDSTs) and delayed precedence (DP) occur commonly in various manufacturing settings. This study investigated the single machine scheduling problem with SDSTs and DP constraints arising in an amplifier assembly company. A mixed-integer linear programming model and a lean iterated greedy (LIG) algorithm is proposed to search for the best job sequence with minimum makespan. Based on the characteristic of delayed precedence constraints of the problem, the proposed LIG algorithm implements a straightforward but effective lean construction mechanism, which can keep the search process within the feasible solution space and quickly converge toward the (near-) global optimum. Computational results reveal that LIG significantly outperforms the state-of-the-art algorithm in terms of solution quality and computational efficiency. This study mainly contributes to providing a simple, effective, and efficient algorithm that can facilitate industrial applications and act as a new benchmark approach for future research.


Author(s):  
Maximilian Moser ◽  
Nysret Musliu ◽  
Andrea Schaerf ◽  
Felix Winter

AbstractIn this paper, we study an important real-life scheduling problem that can be formulated as an unrelated parallel machine scheduling problem with sequence-dependent setup times, due dates, and machine eligibility constraints. The objective is to minimise total tardiness and makespan. We adapt and extend a mathematical model to find optimal solutions for small instances. Additionally, we propose several variants of simulated annealing to solve very large-scale instances as they appear in practice. We utilise several different search neighbourhoods and additionally investigate the use of innovative heuristic move selection strategies. Further, we provide a set of real-life problem instances as well as a random instance generator that we use to generate a large number of test instances. We perform a thorough evaluation of the proposed techniques and analyse their performance. We also apply our metaheuristics to approach a similar problem from the literature. Experimental results show that our methods are able to improve the results produced with state-of-the-art approaches for a large number of instances.


2021 ◽  
pp. 107-133
Author(s):  
Javad Rezaeian ◽  
Keyvan Shokoufi ◽  
Reza Alizadeh Foroutan

Inspired by a real industrial case, this study deals with the problem of scheduling jobs on uniform parallel machines with past-sequence-dependent setup times to minimize the total earliness and tardiness costs. The paper contributes to the existing literature of uniform parallel machines problems by the novel idea of considering position-based learning effects along with processing set restrictions. The presented problem is formulated as a Mixed Integer linear programming (MILP) model. Then, an exact method is introduced to calculate the accurate objective function in the just-in-time (JIT) environments for a given sequence of jobs. Furthermore, three meta-heuristic approaches, (1) a genetic algorithm (GA), (2) a simulated annealing algorithm (SA), and (3) a particle swarm optimization algorithm (PSO) are proposed to solve large size problems in reasonable computational time. Finally, computational results of the proposed meta-heuristic algorithms are evaluated through extensive experiments and tested using ANOVA followed by t-tests to identify the most effective meta-heuristic.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2955
Author(s):  
Jesús Isaac Vázquez-Serrano ◽  
Leopoldo Eduardo Cárdenas-Barrón ◽  
Rodrigo E. Peimbert-García

Assignation-sequencing models have played a critical role in the competitiveness of manufacturing companies since the mid-1950s. The historic and constant evolution of these models, from simple assignations to complex constrained formulations, shows the need for, and increased interest in, more robust models. Thus, this paper presents a model to schedule agents in unrelated parallel machines that includes sequence and agent–machine-dependent setup times (ASUPM), considers an agent-to-machine relationship, and seeks to minimize the maximum makespan criteria. By depicting a more realistic scenario and to address this NP-hard problem, six mixed-integer linear formulations are proposed, and due to its ease of diversification and construct solutions, two multi-start heuristics, composed of seven algorithms, are divided into two categories: Construction of initial solution (designed algorithm) and improvement by intra (tabu search) and inter perturbation (insertions and interchanges). Three different solvers are used and compared, and heuristics algorithms are tested using randomly generated instances. It was found that models that linearizing the objective function by both job completion time and machine time is faster and related to the heuristics, and presents an outstanding level of performance in a small number of instances, since it can find the optimal value for almost every instance, has very good behavior in a medium level of instances, and decent performance in a large number of instances, where the relative deviations tend to increase concerning the small and medium instances. Additionally, two real-world applications of the problem are presented: scheduling in the automotive industry and healthcare.


Sign in / Sign up

Export Citation Format

Share Document