Fiber types of the lingual branch of the trigeminal nerve, chorda tympani, lingual-tonsillar and pharyngeal branches of the glossopharyngeal nerve, and superior laryngeal nerve and their relation to the cardiovascular responses in rats

1996 ◽  
Vol 219 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Takamitsu Hanamori ◽  
Takato Kunitake ◽  
Kazuo Kato ◽  
Hiroshi Kannan
1991 ◽  
Vol 65 (5) ◽  
pp. 1098-1114 ◽  
Author(s):  
D. V. Smith ◽  
T. Hanamori

1. Mammalian taste receptors are distributed within several distinct subpopulations, innervated by branches of cranial nerves VII, IX, and X. Most gustatory electrophysiology has focused on input from the fungiform papillae on the anterior portion of the tongue, carried by the chorda tympani branch of the VIIth nerve. However, laryngeal taste buds in the hamster are as numerous as those in the fungiform papillae. Gustatory fibers in the hamster's chorda tympani and glossopharyngeal nerves have been well characterized. In comparison with these taste fibers, much less is known about the chemical sensitivities of fibers innervating laryngeal taste buds. 2. Action potentials were recorded from 65 individual fibers in the superior laryngeal nerve (SLN) of the hamster. Stimuli were distilled H2O and five concentrations each of sucrose, NaCl, HCl, and quinine hydrochloride (QHCl). All stimuli except the NaCl series were made in physiological saline (0.154 M NaCl) and were delivered from the laryngeal side of the epiglottis via a tracheal cannula. Responses were quantified as the number of impulses in 10 s minus the responses in the preceding 10 s of baseline activity during a rinse with physiological saline. 3. Distilled H2O, HCl, and NaCl were by far the most excitatory stimuli, with mean responses across all cells 5-10 times greater than those evoked by sucrose or QHCl. The order of effectiveness of the strongest concentrations of the stimuli was H2O greater than 0.03 M HCl greater than 1.0 M NaCl much greater than 0.03 M QHCl greater than 1.0 M sucrose. 4. The mean concentration-response function for NaCl was U shaped, with the greatest number of impulses to distilled H2O and 1.0 M NaCl. The responses diminished as the concentrations approached physiological levels (0.154 M NaCl), where there was no response, and increased as NaCl concentration rose above this level. Increasing concentrations of HCl above 0.0003 M elicited increasing responses in these fibers. 5. The mean time course of the responses to distilled H2O and to hypotonic NaCl solutions (0.01 and 0.03 M) peaked in the first few seconds and then declined slowly. This was distinct from the time course of the responses to hypertonic NaCl concentrations (0.3 and 1.0 M), which increased gradually throughout the 10-s response period. Responses to HCl peaked in the initial second and then decayed rapidly to a slowly declining plateau. These distinctively different time courses suggest different receptor mechanisms for water, salt, and acid stimuli. 6. The across-fiber pattern of the responses to hypotonic NaCl solutions correlated strongly to that elicited by distilled H2O.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 130 (3) ◽  
pp. 219-223 ◽  
Author(s):  
Siw Domeij ◽  
Bengt Carlsöö ◽  
Åke Dahlqvist ◽  
Sten Hellström

1989 ◽  
Vol 505 (1) ◽  
pp. 149-152 ◽  
Author(s):  
David F. Donnelly ◽  
Anthony L. Sica ◽  
Morton I. Cohen ◽  
Heng Zhang

Sign in / Sign up

Export Citation Format

Share Document