scholarly journals Strong approximation of spatial random walk in random scenery

2000 ◽  
Vol 88 (2) ◽  
pp. 329-345 ◽  
Author(s):  
Pál Révész ◽  
Zhan Shi
2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wensheng Wang ◽  
Anwei Zhu

Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi  (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋)  (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.


Author(s):  
Florence Merlevède ◽  
Magda Peligrad ◽  
Sergey Utev

In this chapter we investigate the question of central limit behavior and its functional form for the partial sums associated with a centered L2-stationary sequence of real-valued random variables (usually called the random scenery) sampled by a recurrent one-dimensional strongly aperiodic random walk. This question is handled under various conditions dependent on the random scenery. In particular, we assume that the random scenery either satisfies an asymptotic negative dependence condition, or is a function of a determinantal process and a Gaussian sequence, or satisfies a mild projective criterion. We first show that study of central limit behavior for such random walks in random scenery can be handled with results related to linear statistics developed in Chapter 12, provided the random walk has good properties. We then look extensively at the properties of a recurrent one-dimensional strongly aperiodic random walk. The functional form of the central limit theorem is also investigated.


2020 ◽  
Vol 24 ◽  
pp. 127-137
Author(s):  
Nadine Guillotin-Plantard ◽  
Françoise Pène ◽  
Martin Wendler

In this paper, we are interested in the asymptotic behaviour of the sequence of processes (Wn(s,t))s,t∈[0,1] with \begin{equation*} W_n(s,t):=\sum_{k=1}^{\lfloor nt\rfloor}\big(\mathds{1}_{\{\xi_{S_k}\leq s\}}-s\big) \end{equation*} where (ξx, x ∈ ℤd) is a sequence of independent random variables uniformly distributed on [0, 1] and (Sn)n ∈ ℕ is a random walk evolving in ℤd, independent of the ξ’s. In M. Wendler [Stoch. Process. Appl. 126 (2016) 2787–2799], the case where (Sn)n ∈ ℕ is a recurrent random walk in ℤ such that (n−1/αSn)n≥1 converges in distribution to a stable distribution of index α, with α ∈ (1, 2], has been investigated. Here, we consider the cases where (Sn)n ∈ ℕ is either: (a) a transient random walk in ℤd, (b) a recurrent random walk in ℤd such that (n−1/dSn)n≥1 converges in distribution to a stable distribution of index d ∈{1, 2}.


Sign in / Sign up

Export Citation Format

Share Document