transient random walk
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Vol 24 ◽  
pp. 127-137
Author(s):  
Nadine Guillotin-Plantard ◽  
Françoise Pène ◽  
Martin Wendler

In this paper, we are interested in the asymptotic behaviour of the sequence of processes (Wn(s,t))s,t∈[0,1] with \begin{equation*} W_n(s,t):=\sum_{k=1}^{\lfloor nt\rfloor}\big(\mathds{1}_{\{\xi_{S_k}\leq s\}}-s\big) \end{equation*} where (ξx, x ∈ ℤd) is a sequence of independent random variables uniformly distributed on [0, 1] and (Sn)n ∈ ℕ is a random walk evolving in ℤd, independent of the ξ’s. In M. Wendler [Stoch. Process. Appl. 126 (2016) 2787–2799], the case where (Sn)n ∈ ℕ is a recurrent random walk in ℤ such that (n−1/αSn)n≥1 converges in distribution to a stable distribution of index α, with α ∈ (1, 2], has been investigated. Here, we consider the cases where (Sn)n ∈ ℕ is either: (a) a transient random walk in ℤd, (b) a recurrent random walk in ℤd such that (n−1/dSn)n≥1 converges in distribution to a stable distribution of index d ∈{1, 2}.


2019 ◽  
Vol 33 (4) ◽  
pp. 2315-2336
Author(s):  
Inna M. Asymont ◽  
Dmitry Korshunov

Abstract For an arbitrary transient random walk $$(S_n)_{n\ge 0}$$ ( S n ) n ≥ 0 in $${\mathbb {Z}}^d$$ Z d , $$d\ge 1$$ d ≥ 1 , we prove a strong law of large numbers for the spatial sum $$\sum _{x\in {\mathbb {Z}}^d}f(l(n,x))$$ ∑ x ∈ Z d f ( l ( n , x ) ) of a function f of the local times $$l(n,x)=\sum _{i=0}^n{\mathbb {I}}\{S_i=x\}$$ l ( n , x ) = ∑ i = 0 n I { S i = x } . Particular cases are the number of visited sites [first considered by Dvoretzky and Erdős (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 353–367, 1951)], which corresponds to the function $$f(i)={\mathbb {I}}\{i\ge 1\}$$ f ( i ) = I { i ≥ 1 } ; $$\alpha $$ α -fold self-intersections of the random walk [studied by Becker and König (J Theor Probab 22:365–374, 2009)], which corresponds to $$f(i)=i^\alpha $$ f ( i ) = i α ; sites visited by the random walk exactly j times [considered by Erdős and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960) and Pitt (Proc Am Math Soc 43:195–199, 1974)], where $$f(i)={\mathbb {I}}\{i=j\}$$ f ( i ) = I { i = j } .


2018 ◽  
Vol 28 (3) ◽  
pp. 139-156 ◽  
Author(s):  
Valeriy I. Afanasyev

Abstract For weakly transient random walk in a random environment that tend at −∞ the limit theorem for the time of hitting a high level is proved.


2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Nicos Georgiou ◽  
Davar Khoshnevisan ◽  
Kunwoo Kim ◽  
Alex D. Ramos

2016 ◽  
Vol 168 (3-4) ◽  
pp. 691-719
Author(s):  
Amine Asselah ◽  
Bruno Schapira

Sign in / Sign up

Export Citation Format

Share Document