scholarly journals Limit theorem for random walk in weakly dependent random scenery

2010 ◽  
Vol 46 (4) ◽  
pp. 1178-1194 ◽  
Author(s):  
Nadine Guillotin-Plantard ◽  
Clémentine Prieur
2009 ◽  
Vol 41 (2) ◽  
pp. 452-468 ◽  
Author(s):  
Brice Franke ◽  
Tatsuhiko Saigo

In this article we analyse the behaviour of the extremes of a random walk in a random scenery. The random walk is assumed to be in the domain of attraction of a stable law, and the scenery is assumed to be in the domain of attraction of an extreme value distribution. The resulting random sequence is stationary and strongly dependent if the underlying random walk is recurrent. We prove a limit theorem for the extremes of the resulting stationary process. However, if the underlying random walk is recurrent, the limit distribution is not in the class of classical extreme value distributions.


2009 ◽  
Vol 41 (02) ◽  
pp. 452-468 ◽  
Author(s):  
Brice Franke ◽  
Tatsuhiko Saigo

In this article we analyse the behaviour of the extremes of a random walk in a random scenery. The random walk is assumed to be in the domain of attraction of a stable law, and the scenery is assumed to be in the domain of attraction of an extreme value distribution. The resulting random sequence is stationary and strongly dependent if the underlying random walk is recurrent. We prove a limit theorem for the extremes of the resulting stationary process. However, if the underlying random walk is recurrent, the limit distribution is not in the class of classical extreme value distributions.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wensheng Wang ◽  
Anwei Zhu

Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi  (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋)  (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.


1978 ◽  
Vol 10 (04) ◽  
pp. 852-866
Author(s):  
A. J. Stam

Let be a family of random walks with For ε↓0 under certain conditions the random walk U (∊) n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M ∊ = max {U (∊) n , n ≧ 0}, v 0 = min {n : U (∊) n = M ∊}, v 1 = max {n : U (∊) n = M ∊}. The joint limiting distribution of ∊2σ∊ –2 v 0 and ∊σ∊ –2 M ∊ is determined. It is the same as for ∊2σ∊ –2 v 1 and ∊σ–2 ∊ M ∊. The marginal ∊σ–2 ∊ M ∊ gives Kingman's heavy traffic theorem. Also lim ∊–1 P(M ∊ = 0) and lim ∊–1 P(M ∊ &lt; x) are determined. Proofs are by direct comparison of corresponding probabilities for U (∊) n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.


Sign in / Sign up

Export Citation Format

Share Document