Boundedness and blow-up behavior for reaction–diffusion systems in a bounded domain

1999 ◽  
Vol 35 (7) ◽  
pp. 833-844 ◽  
Author(s):  
Jian Zhang
2012 ◽  
Vol 32 (11) ◽  
pp. 4001-4014 ◽  
Author(s):  
Monica Marras ◽  
Stella Vernier Piro

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
A. Acharya ◽  
N. Fonseka ◽  
R. Shivaji

AbstractWe study positive solutions to steady-state reaction–diffusion models of the form $$ \textstyle\begin{cases} -\Delta u=\lambda f(v);\quad\Omega, \\ -\Delta v=\lambda g(u);\quad\Omega, \\ \frac{\partial u}{\partial \eta }+\sqrt{\lambda } u=0;\quad \partial \Omega, \\ \frac{\partial v}{\partial \eta }+\sqrt{\lambda }v=0; \quad\partial \Omega, \end{cases} $$ { − Δ u = λ f ( v ) ; Ω , − Δ v = λ g ( u ) ; Ω , ∂ u ∂ η + λ u = 0 ; ∂ Ω , ∂ v ∂ η + λ v = 0 ; ∂ Ω , where $\lambda >0$ λ > 0 is a positive parameter, Ω is a bounded domain in $\mathbb{R}^{N}$ R N $(N > 1)$ ( N > 1 ) with smooth boundary ∂Ω, or $\Omega =(0,1)$ Ω = ( 0 , 1 ) , $\frac{\partial z}{\partial \eta }$ ∂ z ∂ η is the outward normal derivative of z. We assume that f and g are continuous increasing functions such that $f(0) = 0 = g(0)$ f ( 0 ) = 0 = g ( 0 ) and $\lim_{s \rightarrow \infty } \frac{f(Mg(s))}{s} = 0$ lim s → ∞ f ( M g ( s ) ) s = 0 for all $M>0$ M > 0 . In particular, we extend the results for the single equation case discussed in (Fonseka et al. in J. Math. Anal. Appl. 476(2):480-494, 2019) to the above system.


2015 ◽  
Vol 259 (5) ◽  
pp. 1898-1932 ◽  
Author(s):  
Nejib Mahmoudi ◽  
Philippe Souplet ◽  
Slim Tayachi

Sign in / Sign up

Export Citation Format

Share Document