Generalized singular perturbation approximation method for controller order reduction

1999 ◽  
Vol 32 (2) ◽  
pp. 3526-3531
Author(s):  
Lijun Zhang ◽  
Peng Cheng
2018 ◽  
Vol 18 (04) ◽  
pp. 1850033 ◽  
Author(s):  
Martin Redmann ◽  
Peter Benner

To solve a stochastic linear evolution equation numerically, finite dimensional approximations are commonly used. For a good approximation, one might end up with a sequence of ordinary stochastic linear equations of high order. To reduce the high dimension for practical computations, we consider the singular perturbation approximation as a model order reduction technique in this paper. This approach is well-known from deterministic control theory and here we generalize it for controlled linear systems with Lévy noise. Additionally, we discuss properties of the reduced order model, provide an error bound, and give some examples to demonstrate the quality of this model order reduction technique.


Automatica ◽  
1997 ◽  
Vol 33 (6) ◽  
pp. 1203-1207 ◽  
Author(s):  
Do Chang Oh ◽  
Kyeong Ho Bang ◽  
Hong Bae Park

2021 ◽  
Vol 49 (4) ◽  
pp. 919-934
Author(s):  
Suman Kumar ◽  
Awadhesh Kumar

A new result for balancing control of a bicycle robot (bicyrobo), employing reduced-order modelling of a pre-specified design controller structure in higher-order to derive into a reduced controller has been presented in this paper. The bicyrobo, which is an unstable system accompanying other causes of uncertainty such as UN-model dynamics, parameter deviations, and external disruptions has been of great interests to researchers. The controllers in the literature reviews come up with the higher order controller (HOC), the overall system becomes complex from the perspective of analysis, synthesis, enhancement and also not easy to handle it's hardware implementation. Therefore, a reduced-order pre-specified controller is developed in this work. It is effective enough to tackle unpredictable dynamics. The reduced-order controller (ROC) design is based on model order reduction (MOR) method, which is a resutl of hybridization of balanced truncation (BT) and singular perturbation approximation (SPA) approach. The reduced model so obtained, which retains DC gain as well, has been named as balanced singular perturbation approximation (BSPA) approach. It is based upon the preservation of dominant modes (i.e. appropriate states) of the system as well as the removal of states having relatively less important distinguishing features. The strong demerit of the BT method is that, for reduced-order model (ROM), steady-state values or DC gain do not match with the actual system values. The BSPA has been enabled to account for this demerit. The method incorporates greater dominant requirements and contributes to a better approximation as compared to the existing methods. The results obtained by applying proposed controller, are compared with those of the controllers previously designed and published for the same type of work. Comparatively, the proposed controller has been shown to have better performance as HOC. The performance of HOC and ROC is also examined with perturbed bicyrobo in terms of time-domain analysis and performance indices error.


Author(s):  
Santosh Kumar Suman ◽  
Awadhesh Kumar

A simplified approach for model order reduction (MOR) idea is planned for better understanding and explanation of large- scale linear dynamical (LSLD) system. Such approaches are designed to well understand the description of the LSLD system based upon the Balanced Singular Perturbation Approximation (BSPA) approach. BSPA is tested for minimum / non-minimal and continuous/discrete-time systems valid for linear time-invariant (LTI) systems. The reduced-order model (ROM) is designed to preserved complete parameters with reasonable accuracy employing MOR. The Proposed approach is based upon retaining the dominant modes (may desirable states) of the system and eliminating comparatively the less significant eigenvalues. As the ROM has been derived from retaining the dominant modes of the large- scale linear dynamical stable system, which preserves stability. The strong aspect of the balanced truncation (BT) method is that the steady-state values of the ROM do not match with the original system (OS). The singular perturbation approximation approach (SPA) has been used to remove this drawback. The BSPA has been efficaciously applied on a large-scale system and the outcomes obtained show the efficacy of the approach. The time and frequency response of an approximated system has been also demonstrated by the proposed approach, which proves to be an excellent match as compared to the response obtained by other methods in the literature review with the original system.


Sign in / Sign up

Export Citation Format

Share Document