FME Transaction
Latest Publications


TOTAL DOCUMENTS

666
(FIVE YEARS 228)

H-INDEX

14
(FIVE YEARS 3)

Published By Centre For Evaluation In Education And Science

2406-128x, 1451-2092

2021 ◽  
Vol 49 (4) ◽  
pp. 806-816
Author(s):  
Paulo Ávila ◽  
António Pires ◽  
Goran Putnik ◽  
João Bastos ◽  
Maria Cruz-Cunha

The selection of the resources system (SRS) is an important element in the integration/project of Agile/Virtual Enterprises (A/V E) because its performance is dependent of this selection, and even of its creation. However, it remains a difficult matter to solve because is still a very complex and uncertain problem. We propose that using Value Analysis (VA) in the pre-selection of resources phase represents a significant improvement of the SRS process. The current literature fails to formally address the pre-selection phase and none of the resource selection models incorporate the resources value and its consequence in the complexity of the selection process. Whereby, ours developed model with VA constitutes an innovative approach towards greater sustainability in the configuration of A/V E in the context of Industry 4.0, where a massive interconnection among enterprises is expected and consequently the increase of the selection process complexity. After the construction of a demonstrator tool for a set of the problem formulations, this paper verifies by computational results the thesis regarding the benefits of applying VA to the SRS process: VA reduces the complexity of the SRS process, even ensuring that the final system of resources achieve higher quality/value grade.


2021 ◽  
Vol 49 (3) ◽  
pp. 549-562
Author(s):  
Masih Hanifi ◽  
Hicham Chibane ◽  
Rémy Houssin ◽  
Denis Cavallucci

TRIZ method has long proven its value without appearing to the industrial world as inevitable. Design researchers have therefore addressed the limitations of the TRIZ method and have overcome them with more systematic approaches. Among these, the Inventive Design Method (IDM) has been the subject of several articles and put into practice in the industry. It is considered an improvement over TRIZ but still suffers from some drawbacks in terms of the time-consuming nature of its implementation. We focused on the IDM process by trying to both identify its areas of inefficiencies while attempting to preserve the quality of its deliverables. Our approach consists of applying the precepts of Lean to IDM. The result is the Inverse Problem Graph (IPG) method, inspired by IDM, but offering significant progress in reducing the time required to mobilize experts while preserving its inventive outcomes. This article outlines our approach for the construction of this new method.


2021 ◽  
Vol 49 (4) ◽  
pp. 962-968
Author(s):  
Péter Csavajda ◽  
Péter Böröcz

Most of the shipped products are sensitive against shock and vibration events during the distribution. Various cushioning materials are usually used to prevent the product damages. During the design process the protective packaging system is developed by the engineers based on the cushion and vibration transmissibility features (ie. cushion curve) of the material used. However, after the assembly of the packaged-product, these are stored for various long periods in warehouse. During this time the products pre-load the cushioning material and its parameters can be changed. The main goal of this study is to evaluate the vibration transmissibility of PE and XPE cushioning material at varied storage (pre-loaded) time and static load conditions. Four different kinds of duration (1 hour, 10 hours, 100 hours and 1000 hours) were used for the pre-loading period at three different static loads (3.488 kPa, 4.651 kPa, and 6.976 kPa), and then at 0.5 oct/min sine sweep vibration the peak frequencies of response and vibration transmissibility, and damping ratio were determined. The results show that the effect of pre-loading is minimal by PE material, but can influence the resonance frequencies by XPE cushioning material. The findings of this study help the packaging engineers to understand better the mechanism of these cushioning materials and to design suitable protective packaging systems.


2021 ◽  
Vol 49 (1) ◽  
pp. 78-86
Author(s):  
Stephen Leon ◽  
G. Bharathiraja ◽  
V. Jayakumar

In friction stir welding, lesser tool life restricts the usage of non-circular pin in friction stir welding tool eventhough it delivers comparatively better weld joints than circular pin. Process peak temperature during the process affects the shear strength of the flowing material around the tool pin. Maintaining the process peak temperature as low as possible improves the properties in heat affected zone but on the other hand it increases the stress on the tool pin.Especially on the usage of non-circular pin, the pin surface experiences uneven stress distribution and causes premature tool failure. In this paper, optimum thermal environment through proper selection of process parameters and dwell period with respect to the pin geometry are analysed. A comparative analysis is also made to understand the impact of increase in flat surfaces in the pin surface on weld quality in the view of developing a suitable thermal environment that can improve tool life without compromising joint strength. Apart from this, optimum dwell period for the chosen tool pin geometry is analysed based on the empirical softening temperature of the material.


2021 ◽  
Vol 49 (2) ◽  
pp. 395-400
Author(s):  
Manthan Patil ◽  
Rajesh Gawade ◽  
Shubham Potdar ◽  
Khushabu Nadaf ◽  
Sanoj Suresh ◽  
...  

Flow over a conventional delta wing has been studied experimentally at a subsonic flow of 20 m/sec and the flow field developed at higher angle of attack varying from 10° to 20° has been captured. A vortex generator is mounted on the leeward surface of the delta wing and its effect on the flow field is studied. The set of wing tip vortices generated over the delta wing is captured by the oil flow visualization and the streamline over the delta wing surface captured with and without a vortex generator are compared. Based on the qualitative results, the effect of the vortex generator on the lift coefficient is anticipated. Further, force measurement is carried out to quantitatively analyze the effect of vortex generator on the lift and drag coefficient experienced by the delta wing and justify the anticipation made out of the qualitative oil flow visualization tests. In the present study, the effect of mounting of a vortex generator is found to be minimal on the lift coefficient experienced by the delta wing. However, a significant reduction in the drag coefficient with increase in angle of attack was observed by mounting a typical vortex generator.


2021 ◽  
Vol 49 (2) ◽  
pp. 429-436
Author(s):  
Aleksandar Dubonjac ◽  
Mihailo Lazarević

In this paper, the trajectory tracking problem of a nonlinear robotic system with 3DOFs under the control signal obtained through nonlinearly constrained state spaceIterative Learning Control (ILC) methods is considered. The focus of this paper is the analysis of different control system parameters on the convergence rate of two constrained state space ILCalgorithms: Bounded Error Algorithm (BEAILC) and Constrained Output algorithm (COILC), as well as the comparison between these two algorithms through simulations. The obtained results have shown that COILC algorithm converges faster than BEAILC algorithm when compared with the same learning and feedback parameters, due to lower trajectory restrictions. Also, it has been shown that an increase in feedback gains can decrease the number of iteration terminations during the learning process, thus allowing for more of the trajectory error information to be learned from during the single iteration. Moreover, simulations have shown that the decrease in learning parameter values will increase the number of iterations required to obtain the desired tracking accuracy.


2021 ◽  
Vol 49 (2) ◽  
pp. 414-421
Author(s):  
Manjunath Naik ◽  
L.H. Manjunath ◽  
Vishwanath Koti ◽  
Avinash Lakshmikanthan ◽  
Praveennath Koppad ◽  
...  

Graphene and carbon nanotubes are two carbon based materials known for their unique wear and friction properties. It would be quite interesting to understand the wear behavior of aluminium hybrid composites when these two nanosize reinforcements are incorporated into it. The hybrid composites with varying weight fractions of graphene (1, 2, 3 and 5 wt.%) and fixed CNT content of 2 wt.% were produced using powder metallurgy technique. The effect of varying graphene content on hardness and sliding wear of hybrid composites was studied. The wear tests were done as per ASTM G-99 standard with fixed sliding velocity (2 m/s) and sliding distance (1200 m) but varying applied load (10 - 30 N). Worn surface analysis was conducted using scanning electron microscope to arrive at wear mechanisms responsible for wear of aluminium and its hybrid composites. Increase in graphene content led to increase in bulk hardness with highest value of 61 RHN for hybrid composite with 3 wt.% graphene content. The wear rate of hybrid composites was found to be decreasing with enhancement in graphene content. Lower wear rate in hybrid composites was due to the formation of lubricating layer on the worn surface.


2021 ◽  
Vol 49 (4) ◽  
pp. 773-783
Author(s):  
Pedro Pinheiro ◽  
Goran Putnik

Industry 4.0 emerges as a tool to help organizations manage. Often identified with the Internet of Things and Cyber-Physical Systems, Industry 4.0 appears as a solution to many of the difficulties plaguing manufacturing. The history of management theories, e.g. by Taylor, Fayol, or Simon, shows that deterministic solutions do not ensure the permanent success of organizations. In manufacturing, the economy overlaps the technological, social, environmental, and cultural dimensions that influence organizations. This paper assesses the possible benefits for the efficiency of the organizations resulting from the implementation of Industry 4.0. To fulfill this purpose, the effects on the hierarchical structures of organizations are investigated, namely those related to specialization, authority, and span of control. The results show that technological advances and efficiency of industry 4.0, which are relevant for the economy, still do not respond satisfactorily to social needs that require changes in the behavior of the management system.


2021 ◽  
Vol 49 (1) ◽  
pp. 195-205
Author(s):  
Mitra Vesović ◽  
Goran Petrović ◽  
Radoslav Radulović

In order to give an insight into the work of the machine before the production and assembly and to obtain good analysis, this paper presents detailed solutions to the specific problem occured in the field of analytical mechanics. In addition to numerical procedures in the paper, a review of the theoretical foundations was made.Various types of analysis are very common in mechanical engineering, due to the possibility of an approximation of complex machines. For the proposed system, Lagrange's equations of the first kind, covariant and contravariant equations, Hamiltons equations and the generalized coordinates, as well as insight in Coulumb friction force are provided.Also, the conditions of static equilibrium are solved numerically and using intersection of the two curves. Finally, stability of motion for the disturbed and undisturbed system was investigated.


2021 ◽  
Vol 49 (1) ◽  
pp. 244-251
Author(s):  
Narayanan Natarajan ◽  
S. Rehman ◽  
Nandhini Shiva ◽  
M. Vasudevan

An accurate estimate of wind resource assessment is essential for the identification of potential site for wind farm development. The hourly average wind speed measured at 50 m above ground level over a period of 39 years (1980-2018) from 25 locations in Tamil Nadu, India have been used in this study. The annual and seasonal wind speed trends are analyzed using linear and Mann-Kendall statistical methods. The annual energy yield, and net capacity factor are obtained for the chosen wind turbine with 2 Mega Watt rated power. As per the linear trend analysis, Chennai and Kanchipuram possess a significantly decreasing trend, while Nagercoil, Thoothukudi, and Tirunelveli show an increasing trend. Mann-Kendall trend analysis shows that cities located in the southern peninsula and in the vicinity of the coastal regions have significant potential for wind energy development. Moreover, a majority of the cities show an increasing trend in the autumn season due to the influence of the retreating monsoons which is accompanied with heavy winds. The mean wind follows an oscillating pattern throughout the year at all the locations. Based on the net annual energy output, Nagercoil, Thoothukudi and Nagapattinam are found to be the most suitable locations for wind power deployment in Tamil Nadu, followed by Cuddalore, Kumbakonam, Thanjavur and Tirunelveli.


Sign in / Sign up

Export Citation Format

Share Document