Biased algorithmic randomness

2020 ◽  
pp. 206-231
2021 ◽  
Vol 62 (2) ◽  
pp. 022202
Author(s):  
Tejas Bhojraj

2016 ◽  
Vol 22 (2) ◽  
pp. 249-286 ◽  
Author(s):  
LAURENT BIENVENU ◽  
CHRISTOPHER P. PORTER

AbstractA set of infinite binary sequences ${\cal C} \subseteq 2$ℕ is negligible if there is no partial probabilistic algorithm that produces an element of this set with positive probability. The study of negligibility is of particular interest in the context of ${\rm{\Pi }}_1^0 $ classes. In this paper, we introduce the notion of depth for ${\rm{\Pi }}_1^0 $ classes, which is a stronger form of negligibility. Whereas a negligible ${\rm{\Pi }}_1^0 $ class ${\cal C}$ has the property that one cannot probabilistically compute a member of ${\cal C}$ with positive probability, a deep ${\rm{\Pi }}_1^0 $ class ${\cal C}$ has the property that one cannot probabilistically compute an initial segment of a member of ${\cal C}$ with high probability. That is, the probability of computing a length n initial segment of a deep ${\rm{\Pi }}_1^0 $ class converges to 0 effectively in n.We prove a number of basic results about depth, negligibility, and a variant of negligibility that we call tt-negligibility. We provide a number of examples of deep ${\rm{\Pi }}_1^0 $ classes that occur naturally in computability theory and algorithmic randomness. We also study deep classes in the context of mass problems, examine the relationship between deep classes and certain lowness notions in algorithmic randomness, and establish a relationship between members of deep classes and the amount of mutual information with Chaitin’s Ω.


2019 ◽  
Vol 62 (5) ◽  
pp. 70-80
Author(s):  
Rod Downey ◽  
Denis R. Hirschfeldt

2005 ◽  
Vol 05 (02) ◽  
pp. 167-192 ◽  
Author(s):  
ROD DOWNEY ◽  
DENIS R. HIRSCHFELDT ◽  
JOSEPH S. MILLER ◽  
ANDRÉ NIES

As a natural example of a 1-random real, Chaitin proposed the halting probability Ω of a universal prefix-free machine. We can relativize this example by considering a universal prefix-free oracle machine U. Let [Formula: see text] be the halting probability of UA; this gives a natural uniform way of producing an A-random real for every A ∈ 2ω. It is this operator which is our primary object of study. We can draw an analogy between the jump operator from computability theory and this Omega operator. But unlike the jump, which is invariant (up to computable permutation) under the choice of an effective enumeration of the partial computable functions, [Formula: see text] can be vastly different for different choices of U. Even for a fixed U, there are oracles A =* B such that [Formula: see text] and [Formula: see text] are 1-random relative to each other. We prove this and many other interesting properties of Omega operators. We investigate these operators from the perspective of analysis, computability theory, and of course, algorithmic randomness.


Sign in / Sign up

Export Citation Format

Share Document