Algorithmic Randomness and Turing Reducibility

Author(s):  
Rodney G. Downey ◽  
Denis R. Hirschfeldt
2020 ◽  
Vol 26 (3-4) ◽  
pp. 268-286
Author(s):  
YONG CHENG

AbstractIn this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem ($\textsf {G1}$ for short). We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ (i.e., T is weaker than $\mathbf {R}$ w.r.t. interpretation) and $\textsf {G1}$ holds for T? In this paper, we show that there are many such theories based on Jeřábek’s work using some model theory. We prove that for each recursively inseparable pair $\langle A,B\rangle $, we can construct a r.e. theory $U_{\langle A,B\rangle }$ such that $U_{\langle A,B\rangle }$ is weaker than $\mathbf {R}$ w.r.t. interpretation and $\textsf {G1}$ holds for $U_{\langle A,B\rangle }$. As a corollary, we answer a question from Albert Visser. Moreover, we prove that for any Turing degree $\mathbf {0}< \mathbf {d}<\mathbf {0}^{\prime }$, there is a theory T with Turing degree $\mathbf {d}$ such that $\textsf {G1}$ holds for T and T is weaker than $\mathbf {R}$ w.r.t. Turing reducibility. As a corollary, based on Shoenfield’s work using some recursion theory, we show that there is no theory with a minimal degree of Turing reducibility for which $\textsf {G1}$ holds.


2021 ◽  
Vol 62 (2) ◽  
pp. 022202
Author(s):  
Tejas Bhojraj

1983 ◽  
Vol 48 (4) ◽  
pp. 921-930 ◽  
Author(s):  
Michael Stob

AbstractWe use some simple facts about the wtt-degrees of r.e. sets together with a construction to answer some questions concerning the join and meet operators in the r.e. degrees. The construction is that of an r.e. Turing degree a with just one wtt-degree in a such that a is the join of a minimal pair of r.e. degrees. We hope to illustrate the usefulness of studying the stronger reducibility orderings of r.e. sets for providing information about Turing reducibility.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750004 ◽  
Author(s):  
Laurent Bienvenu ◽  
Noam Greenberg ◽  
Benoit Monin

We investigate the role of continuous reductions and continuous relativization in the context of higher randomness. We define a higher analogue of Turing reducibility and show that it interacts well with higher randomness, for example with respect to van Lambalgen’s theorem and the Miller–Yu/Levin theorem. We study lowness for continuous relativization of randomness, and show the equivalence of the higher analogues of the different characterizations of lowness for Martin-Löf randomness. We also characterize computing higher [Formula: see text]-trivial sets by higher random sequences. We give a separation between higher notions of randomness, in particular between higher weak 2-randomness and [Formula: see text]-randomness. To do so we investigate classes of functions computable from Kleene’s [Formula: see text] based on strong forms of the higher limit lemma.


Author(s):  
Harold Hodes

A reducibility is a relation of comparative computational complexity (which can be made precise in various non-equivalent ways) between mathematical objects of appropriate sorts. Much of recursion theory concerns such relations, initially between sets of natural numbers (in so-called classical recursion theory), but later between sets of other sorts (in so-called generalized recursion theory). This article considers only the classical setting. Also Turing first defined such a relation, now called Turing- (or just T-) reducibility; probably most logicians regard it as the most important such relation. Turing- (or T-) degrees are the units of computational complexity when comparative complexity is taken to be T-reducibility.


2016 ◽  
Vol 22 (2) ◽  
pp. 249-286 ◽  
Author(s):  
LAURENT BIENVENU ◽  
CHRISTOPHER P. PORTER

AbstractA set of infinite binary sequences ${\cal C} \subseteq 2$ℕ is negligible if there is no partial probabilistic algorithm that produces an element of this set with positive probability. The study of negligibility is of particular interest in the context of ${\rm{\Pi }}_1^0 $ classes. In this paper, we introduce the notion of depth for ${\rm{\Pi }}_1^0 $ classes, which is a stronger form of negligibility. Whereas a negligible ${\rm{\Pi }}_1^0 $ class ${\cal C}$ has the property that one cannot probabilistically compute a member of ${\cal C}$ with positive probability, a deep ${\rm{\Pi }}_1^0 $ class ${\cal C}$ has the property that one cannot probabilistically compute an initial segment of a member of ${\cal C}$ with high probability. That is, the probability of computing a length n initial segment of a deep ${\rm{\Pi }}_1^0 $ class converges to 0 effectively in n.We prove a number of basic results about depth, negligibility, and a variant of negligibility that we call tt-negligibility. We provide a number of examples of deep ${\rm{\Pi }}_1^0 $ classes that occur naturally in computability theory and algorithmic randomness. We also study deep classes in the context of mass problems, examine the relationship between deep classes and certain lowness notions in algorithmic randomness, and establish a relationship between members of deep classes and the amount of mutual information with Chaitin’s Ω.


Sign in / Sign up

Export Citation Format

Share Document