Strictly nonpointwise Markov operators and weak mixing

Author(s):  
Tomasz Downarowicz
Keyword(s):  
1976 ◽  
Vol 32 (3) ◽  
pp. 263-278 ◽  
Author(s):  
Steven Alpern
Keyword(s):  

Author(s):  
Carlo Pandiscia

In this work, we propose a method to investigate the factorization property of a adjontable Markov operator between two algebraic probability spaces without using the dilation theory. Assuming the existence of an anti-unitary operator on Hilbert space related to Stinespring representations of our Markov operator, which satisfy some particular modular relations, we prove that it admits a factorization. The method is tested on the two typologies of maps which we know admits a factorization, the Markov operators between commutative probability spaces and adjontable homomorphism. Subsequently, we apply these methods to particular adjontable Markov operator between matrix algebra which fixes the diagonal.


1994 ◽  
Vol 49 (6) ◽  
pp. 3297-3300 ◽  
Author(s):  
J. J. Szymanski ◽  
J. D. Bowman ◽  
M. Leuschner ◽  
B. A. Brown ◽  
I. C. Girit
Keyword(s):  

2008 ◽  
Vol 23 (17n20) ◽  
pp. 1266-1277 ◽  
Author(s):  
WILLEM T. H. VAN OERS

Searches for parity violation in hadronic systems started soon after the evidence for parity violation in β-decay of 60 Co was presented by Madame Chien-Shiung Wu and in π and μ decay by Leon Lederman in 1957. The early searches for parity violation in hadronic systems did not reach the sensitivity required and only after technological advances in later years was parity violation unambiguously established. Within the meson-exchange description of the strong interaction, theory and experiment meet in a set of seven weak meson-nucleon coupling constants. Even today, after almost five decades, the determination of the seven weak meson-nucleon couplings is incomplete. Parity violation in nuclear systems is rather complex due to the intricacies of QCD. More straight forward in terms of interpretation are measurements of the proton-proton parity-violating analyzing power (normalized differences in scattering yields for positive and negative helicity incident beams), for which there exist three precision experiments (at 13.6, at 45, and 221 MeV). To-date, there are better possibilities for theoretical interpretation using effective field theory approaches. The situation with regard to the measurement of the parity-violating analyzing power or asymmetry in polarized electron scattering is quite different. Although the original measurements were intended to determine the electro-weak mixing angle, with the current knowledge of the electro-weak interaction and the great precision with which electro-weak radiative corrections can be calculated, the emphasis has been to study the structure of the nucleon, and in particular the strangeness content of the nucleon. A whole series of experiments (the SAMPLE experiment at MIT-Bates, the G0 experiment and HAPPEX experiments at Jefferson Laboratory (JLab), and the PVA4 experiment at MAMI) have indicated that the strange quark contributions to the charge and magnetization distributions of the nucleon are tiny. These measurements if extrapolated to zero degrees and zero momentum transfer have also provided a factor five improvement in the knowledge of the neutral weak couplings to the quarks. Choosing appropriate kinematics in parity-violating electron-proton scattering permits nucleon structure effects on the measured analyzing power to be precisely controlled. Consequently, a precise measurement of the ‘running’ of sin 2θw or the electro-weak mixing angle has become within reach. The [Formula: see text] experiment at Jefferson Laboratory is to measure this quantity to a precision of about 4%. This will either establish conformity with the Standard Model of quarks and leptons or point to New Physics as the Standard Model must be encompassed in a more general theory required, for instance, by a convergence of the three couplings (strong, electromagnetic, and weak) to a common value at the GUT scale. The upgrade of CEBAF at Jefferson Laboratory to 12 GeV, will allow a new measurement of sin 2θW in parity-violating electron-electron scattering with an improved precision to the current better measurement (the SLAC E158 experiment) of the ‘running’ of sin 2θW away from the Z0 pole. Preliminary design studies of such an experiment show that a precision comparable to the most precise individual measurements at the Z0 pole (to about ±0.00025) can be reached. The result of this experiment will be rather complementary to the [Formula: see text] experiment in terms of sensitivity to New Physics.


2004 ◽  
Vol 299 (1) ◽  
pp. 300-304 ◽  
Author(s):  
Lianfa He ◽  
Xinhua Yan ◽  
Lingshu Wang

2016 ◽  
Vol 37 (5) ◽  
pp. 1657-1680 ◽  
Author(s):  
AMI VISELTER

We generalize the notion of weakly mixing unitary representations to locally compact quantum groups, introducing suitable extensions of all standard characterizations of weak mixing to this setting. These results are used to complement the non-commutative Jacobs–de Leeuw–Glicksberg splitting theorem of Runde and the author [Ergodic theory for quantum semigroups. J. Lond. Math. Soc. (2) 89(3) (2014), 941–959]. Furthermore, a relation between mixing and weak mixing of state-preserving actions of discrete quantum groups and the properties of certain inclusions of von Neumann algebras, which is known for discrete groups, is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document