Modern Physics Letters A
Latest Publications


TOTAL DOCUMENTS

11015
(FIVE YEARS 1081)

H-INDEX

97
(FIVE YEARS 12)

Published By World Scientific

0217-7323, 0217-7323

Author(s):  
G. V. Silva ◽  
V. B. Bezerra ◽  
J. P. Morais Graça ◽  
I. P. Lobo

In this work, we analyze the Joule–Thomson expansion in an AdS Reissner–Nordström black hole, surrounded by an average cosmological fluid, in Rainbow Gravity. We plot the graphs corresponding to the inversion temperature curves and numerically calculate the ratio between the minimum of the inversion temperature and the critical temperature, with the aim of investigating how Rainbow Gravity alters such behaviors compared to General Relativity.


Author(s):  
Esma Zouaoui ◽  
Noureddine Mebarki ◽  
Achour Benslama

In this paper, a new model using a general expression of the radiation energy and explaining the dynamics of the afterglows is proposed. It is shown that this model is suitable for the ultra-relativistic and non-relativistic phases as well as the study of radiative and adiabatic fireballs.


Author(s):  
Giridhari Deogharia ◽  
Mayukh Bandyopadhyay ◽  
Ritabrata Biswas

The main aim of this work is to give a suitable explanation of present accelerating universe through an acceptable interactive dynamical cosmological model. A three-fluid cosmological model is introduced in the background of Friedmann–Lemaître–Robertson-Walker asymptotically flat spacetime. This model consists of interactive dark matter and dark energy with baryonic matter, taken as perfect fluid, satisfying barotropic equation of state. We consider dust as the candidate of dark matter. A scalar field [Formula: see text] represents dark energy with potential [Formula: see text]. Einstein’s field equations are utilized to construct a three-dimensional interactive autonomous system by choosing suitable interaction between dark energy and dark matter. We take the interaction kernel as [Formula: see text], where [Formula: see text] indicates the density of dark energy, [Formula: see text] is the interacting constant and [Formula: see text] is Hubble parameter. In order to explain the stability of this system, we obtain some suitable critical points. We analyze stability of obtained critical points to show the different phases of universe and cosmological implications. Surprisingly, we find some stable critical points which represent late-time dark energy-dominated era when a model parameter [Formula: see text] is equal to [Formula: see text]. We introduce a two-dimensional interactive autonomous system and after phase portrait analysis of it, we get several stable points which represent dark energy-dominated era and late-time cosmic acceleration simultaneously. Here, we also demonstrate the variation in interaction at vicinity of phantom barrier [Formula: see text]. From our work, we can also predict the future phase evolution of the universe.


Author(s):  
Rami Ahmad El-Nabulsi ◽  
Waranont Anukool

In classical mechanics, in the case of gravitational and electromagnetic interactions, the force on a particle is usually proportional to its acceleration: The force acts locally on the particle. However, there are situations possible-if the particle moves through a suitable medium, for example, in which the force depends also on the first-time derivative of its acceleration, the jerk, and on its second-time derivative, the snap, and possibly also on higher-time derivatives. Such forces are called nonlocal, and this work investigates such nonlocal forces, mainly those depending on the jerk. In particular, we implement jerk and acceleration in geodesics by means of the nonlocal-in-time kinetic energy approach to spacetime physics. We describe a framework that can be used to estimate the quantum nonlocal time parameter by studying the deflection of light around the Sun. Comparing our results with long baseline interferometry (VLBI) observations, we concluded that the nonlocal time parameter [Formula: see text] s.


Author(s):  
Faizuddin Ahmed

In this paper, effects of Lorentz symmetry violation determined by a tensor field [Formula: see text] out of the Standard Model Extension on a modified quantum oscillator field in the presence of Cornell-type scalar potential are analyzed. We first introduced a scalar potential [Formula: see text] by modifying the mass square term via transformation [Formula: see text] in the Klein–Gordon equation, and then replace the momentum operator [Formula: see text], where [Formula: see text] is an arbitrary function other than [Formula: see text] to study the modified Klein–Gordon oscillator. We solve the wave equation and obtain the analytical bound-states solutions and see the dependence of oscillator frequency [Formula: see text] on the quantum numbers [Formula: see text] as well as on Lorentz-violating parameters with the potential which shows a quantum effect.


Author(s):  
A. Merdaci ◽  
N. Boudiaf ◽  
L. Chetouani

Exact Green’s function related to a Dirac particle submitted to the combination of Aharonov–Bohm and Coulomb potentials in [Formula: see text]) coordinate space is analytically calculated via path integral formalism. The Pauli matrices which describe the spin dynamics are replaced by two fermionic oscillators via the Schwinger model. The energy spectrum as well as the corresponding normalized wave functions are extracted following this approach. The interesting properties of the spinors are thus deduced after symmetrization. According to the symmetric form for Green’s function, it is shown that the non-relativistic limit of the Dirac particle is undertaken with much ease.


Author(s):  
T. G. Zhang ◽  
Y. H. Wang ◽  
L. N. Chen ◽  
L. R. Dai

The study of dibaryons has gained extensive attention both theoretically and experimentally since the confirmation of six-quark exotic [Formula: see text] dibaryon (with spin 3 and isospin 0) by recent COSY experiment. We ever proposed the chiral SU(3) quark model and predicted the binding energy of the [Formula: see text] system, in which the hidden-color channel was shown to play an important role in its structure. In this work, we further study the structure of [Formula: see text] dibaryon (with spin 0 and isospin [Formula: see text]) and strangeness [Formula: see text] under the chiral SU(3) quark model. The results show that hidden-color channel has an obvious influence on the binding energy of [Formula: see text] system.


Author(s):  
Zhiming Huang ◽  
Zhenbang Rong ◽  
Yiyong Ye

We study the quantum teleportation under fluctuating electromagnetic field in the presence of a perfectly reflecting boundary. The noisy scheme of quantum teleportation affected by electromagnetic fluctuation is proposed. Then we calculate and investigate the behaviors of entanglement and fidelity, which are closely related to the plane boundary and atomic polarization. After a period of evolution, entanglement and fidelity evolve to zero and nonzero stable value respectively. Fidelity is closely related to the weight parameter and phase parameter of the teleported state. Besides, small two-atom separation makes entanglement and fidelity have better enhancement. Furthermore, the presence of boundary, atomic polarization and two-atom separation offers us more freedom to adjust the performance of the quantum teleportation. The results would give us new insight into quantum communication in an open quantum system since quantum teleportation plays an important role in quantum communication and quantum information.


Author(s):  
Alokananda Kar ◽  
Shouvik Sadhukhan ◽  
Ujjal Debnath

In this paper, we have used the reconstructed Dirac–Born–Infeld (DBI)-essence dark energy density to modify the mass accretions of black holes and wormholes. In general, the black hole mass accretion does not depend on the metric or local Einstein geometry. That is why we have used a generalized mechanism by reconstructing the DBI-essence dark energy reconstruction with [Formula: see text] gravity. We have used some particular forms of the scale factor to analyze the accretion phenomena. We have shown the effect of cosmic evolution in the proper time variation of black hole mass accretion. Finally, we have studied the validity of energy conditions and analyzed the Type I–IV singularities for our reconstructed model.


Author(s):  
L. Smaldone

In this paper, we show that several applications of [Formula: see text] fermions to statistical mechanics and quantum field theory, previously discussed in literature, are based on a wrong statement about the connection between deformed and undeformed fermion operators. Then we exclude various classes of ansatz and we put some constraints about the form of such relation.


Sign in / Sign up

Export Citation Format

Share Document