interval exchange transformations
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
pp. 1-40
Author(s):  
FRANCE GHEERAERT ◽  
MARIE LEJEUNE ◽  
JULIEN LEROY

Abstract Dendric shifts are defined by combinatorial restrictions of the extensions of the words in their languages. This family generalizes well-known families of shifts such as Sturmian shifts, Arnoux–Rauzy shifts and codings of interval exchange transformations. It is known that any minimal dendric shift has a primitive $\mathcal {S}$ -adic representation where the morphisms in $\mathcal {S}$ are positive tame automorphisms of the free group generated by the alphabet. In this paper, we investigate those $\mathcal {S}$ -adic representations, heading towards an $\mathcal {S}$ -adic characterization of this family. We obtain such a characterization in the ternary case, involving a directed graph with two vertices.


Author(s):  
Christian Weiß

AbstractInterval exchange transformations are typically uniquely ergodic maps and therefore have uniformly distributed orbits. Their degree of uniformity can be measured in terms of the star-discrepancy. Few examples of interval exchange transformations with low-discrepancy orbits are known so far and only for $$n=2,3$$ n = 2 , 3 intervals, there are criteria to completely characterize those interval exchange transformations. In this paper, it is shown that having low-discrepancy orbits is a conjugacy class invariant under composition of maps. To a certain extent, this approach allows us to distinguish interval exchange transformations with low-discrepancy orbits from those without. For $$n=4$$ n = 4 intervals, the classification is almost complete with the only exceptional case having monodromy invariant $$\rho = (4,3,2,1)$$ ρ = ( 4 , 3 , 2 , 1 ) . This particular monodromy invariant is discussed in detail.


Author(s):  
Pierre Arnoux ◽  
Julien Cassaigne ◽  
Sébastien Ferenczi ◽  
Pascal Hubert

2021 ◽  
Vol 17 (0) ◽  
pp. 481
Author(s):  
Sébastien Labbé

<p style='text-indent:20px;'>We extend the notion of Rauzy induction of interval exchange transformations to the case of toral <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation, i.e., <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action defined by rotations on a 2-torus. If <inline-formula><tex-math id="M3">\begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document}</tex-math></inline-formula> denotes the symbolic dynamical system corresponding to a partition <inline-formula><tex-math id="M4">\begin{document}$ \mathscr{P} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M7">\begin{document}$ R $\end{document}</tex-math></inline-formula> is Cartesian on a sub-domain <inline-formula><tex-math id="M8">\begin{document}$ W $\end{document}</tex-math></inline-formula>, we express the 2-dimensional configurations in <inline-formula><tex-math id="M9">\begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document}</tex-math></inline-formula> as the image under a <inline-formula><tex-math id="M10">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-dimensional morphism (up to a shift) of a configuration in <inline-formula><tex-math id="M11">\begin{document}$ \mathscr{X}_{\widehat{\mathscr{P}}|_W, \widehat{R}|_W} $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M12">\begin{document}$ \widehat{\mathscr{P}}|_W $\end{document}</tex-math></inline-formula> is the induced partition and <inline-formula><tex-math id="M13">\begin{document}$ \widehat{R}|_W $\end{document}</tex-math></inline-formula> is the induced <inline-formula><tex-math id="M14">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action on <inline-formula><tex-math id="M15">\begin{document}$ W $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We focus on one example, <inline-formula><tex-math id="M16">\begin{document}$ \mathscr{X}_{\mathscr{P}_0, R_0} $\end{document}</tex-math></inline-formula>, for which we obtain an eventually periodic sequence of 2-dimensional morphisms. We prove that it is the same as the substitutive structure of the minimal subshift <inline-formula><tex-math id="M17">\begin{document}$ X_0 $\end{document}</tex-math></inline-formula> of the Jeandel–Rao Wang shift computed in an earlier work by the author. As a consequence, <inline-formula><tex-math id="M18">\begin{document}$ {\mathscr{P}}_0 $\end{document}</tex-math></inline-formula> is a Markov partition for the associated toral <inline-formula><tex-math id="M19">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id="M20">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula>. It also implies that the subshift <inline-formula><tex-math id="M21">\begin{document}$ X_0 $\end{document}</tex-math></inline-formula> is uniquely ergodic and is isomorphic to the toral <inline-formula><tex-math id="M22">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id="M23">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula> which can be seen as a generalization for 2-dimensional subshifts of the relation between Sturmian sequences and irrational rotations on a circle. Batteries included: the algorithms and code to reproduce the proofs are provided.</p>


2020 ◽  
pp. 1-55
Author(s):  
MICHAEL DAMRON ◽  
JON FICKENSCHER

Abstract If $\mathcal {A}$ is a finite set (alphabet), the shift dynamical system consists of the space $\mathcal {A}^{\mathbb {N}}$ of sequences with entries in $\mathcal {A}$ , along with the left shift operator S. Closed S-invariant subsets are called subshifts and arise naturally as encodings of other systems. In this paper, we study the number of ergodic measures for transitive subshifts under a condition (‘regular bispecial condition’) on the possible extensions of words in the associated language. Our main result shows that under this condition, the subshift can support at most $({K+1})/{2}$ ergodic measures, where K is the limiting value of $p(n+1)-p(n)$ , and p is the complexity function of the language. As a consequence, we answer a question of Boshernitzan from 1984, providing a combinatorial proof for the bound on the number of ergodic measures for interval exchange transformations.


Author(s):  
Jon Chaika ◽  
Krzysztof Frączek ◽  
Adam Kanigowski ◽  
Corinna Ulcigrai

AbstractWe consider smooth flows preserving a smooth invariant measure, or, equivalently, locally Hamiltonian flows on compact orientable surfaces and show that, when the genus of the surface is two, almost every such locally Hamiltonian flow with two non-degenerate isomorphic saddles has singular spectrum. More in general, singularity of the spectrum holds for special flows over a full measure set of interval exchange transformations with a hyperelliptic permutation (of any number of exchanged intervals), under a roof with symmetric logarithmic singularities. The result is proved using a criterion for singularity based on tightness of Birkhoff sums with exponential tails decay. A key ingredient in the proof, which is of independent interest, is a result on translation surfaces well approximated by single cylinders. We show that for almost every translation surface in any connected component of any stratum there exists a full measure set of directions which can be well approximated by a single cylinder of area arbitrarily close to one. The result, in the special case of the stratum $$\mathcal {H}(1,1)$$ H ( 1 , 1 ) , yields rigidity sets needed for the singularity result.


2020 ◽  
Vol 29 (3) ◽  
pp. 595-618
Author(s):  
François Dahmani ◽  
Koji Fujiwara ◽  
Vincent Guirardel

Sign in / Sign up

Export Citation Format

Share Document