K-theory for discrete groups

Author(s):  
P. Baum ◽  
A. Connes
Keyword(s):  
Author(s):  
Aderemi Kuku

AbstractLet be a generalized based category (see definition 1.2). In this paper, we construct a cohomology theory in the category of contravariant functors: where R is a commutative ring with identity, which generalizes Bredon cohomology involving finite, profinite or discrete groups.We also study higher K-theory of the category of finitely generated projective objects in and the category of finitely generated objects in and obtain some finiteness and other results.


K-Theory ◽  
2008 ◽  
Vol 38 (2) ◽  
pp. 95-111 ◽  
Author(s):  
Christopher Dwyer

Author(s):  
S. KALISZEWSKI ◽  
MAGNUS B. LANDSTAD ◽  
JOHN QUIGG

Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action $(C,\unicode[STIX]{x1D6FE})$ , then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if $(C,\unicode[STIX]{x1D6FE})$ is the action by translation on $\ell ^{\infty }(G)$ , we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the $E$ -ization functor we defined earlier, where $E$ is a large ideal of $B(G)$ .


Sign in / Sign up

Export Citation Format

Share Document