Noise Sensitivity of Boolean Functions and Percolation

Author(s):  
Christophe Garban ◽  
Jeffrey E. Steif
1999 ◽  
Vol 90 (1) ◽  
pp. 5-43 ◽  
Author(s):  
Itai Benjamini ◽  
Gil Kalai ◽  
Oded Schramm

2018 ◽  
Vol 27 (3) ◽  
pp. 334-357
Author(s):  
RAPHAËL BOUYRIE

Keller and Kindler recently established a quantitative version of the famous Benjamini–Kalai–Schramm theorem on the noise sensitivity of Boolean functions. Their result was extended to the continuous Gaussian setting by Keller, Mossel and Sen by means of a Central Limit Theorem argument. In this work we present a unified approach to these results, in both discrete and continuous settings. The proof relies on semigroup decompositions together with a suitable cut-off argument, allowing for the efficient use of the classical hypercontractivity tool behind these results. It extends to further models of interest such as families of log-concave measures and Cayley and Schreier graphs. In particular we obtain a quantitative version of the Benjamini–Kalai–Schramm theorem for the slices of the Boolean cube.


2019 ◽  
Vol 6 (2) ◽  
pp. 90-94
Author(s):  
Hernandez Piloto Daniel Humberto

In this work a class of functions is studied, which are built with the help of significant bits sequences on the ring ℤ2n. This class is built with use of a function ψ: ℤ2n → ℤ2. In public literature there are works in which ψ is a linear function. Here we will use a non-linear ψ function for this set. It is known that the period of a polynomial F in the ring ℤ2n is equal to T(mod 2)2α, where α∈ , n01- . The polynomials for which it is true that T(F) = T(F mod 2), in other words α = 0, are called marked polynomials. For our class we are going to use a polynomial with a maximum period as the characteristic polyomial. In the present work we show the bounds of the given class: non-linearity, the weight of the functions, the Hamming distance between functions. The Hamming distance between these functions and functions of other known classes is also given.


Author(s):  
Yu ZHOU ◽  
Wei ZHAO ◽  
Zhixiong CHEN ◽  
Weiqiong WANG ◽  
Xiaoni DU

Sign in / Sign up

Export Citation Format

Share Document