Signal To Noise Ratio
Recently Published Documents





2021 ◽  
Vol 2021 (12) ◽  
pp. 003
José Fonseca ◽  
Chris Clarkson

Abstract In this paper, we study how to directly measure the effect of peculiar velocities in the observed angular power spectra. We do this by constructing a new anti-symmetric estimator of Large Scale Structure using different dark matter tracers. We show that the Doppler term is the major component of our estimator and we show that we can measure it with a signal-to-noise ratio up to ∼ 50 using a futuristic SKAO HI galaxy survey. We demonstrate the utility of this estimator by using it to provide constraints on the Euler equation.

2021 ◽  
Ramazan Duram ◽  
Murat Güzeltepe

Abstract The residue class set of a Hurwitz integer is constructed by modulo function with primitive Hurwitz integer whose norm is a prime integer, i.e. prime Hurwitz integer. In this study, we consider primitive Hurwitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Hurwitz integer is less than the norm of the primitive Hurwitz integer used to construct the residue class set of the Hurwitz integer, then, the Euclid division algorithm works for this primitive Hurwitz integer. The Euclid division algorithm always works for prime Hurwitz integers. In other words, the prime Hurwitz integers and halves-integer primitive Hurwitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Hurwitz residue class set that lies on primitive Hurwitz integers that their norms are not a prime integer and their components are in integers set. In this study, we solve this problem by defining Hurwitz integers that have the ”division with small remainder” property, namely, encoder Hurwitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Especially, Euclidean metric. Also, we investigate the performances of Hurwitz signal constellations (the left residue class set) obtained by modulo function with Hurwitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by means of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).

2021 ◽  
Vol 14 (12) ◽  
pp. 7453-7474
Alexandra Tsekeri ◽  
Vassilis Amiridis ◽  
Alexandros Louridas ◽  
George Georgoussis ◽  
Volker Freudenthaler ◽  

Abstract. Dust orientation has been an ongoing investigation in recent years. Its potential proof will be a paradigm shift for dust remote sensing, invalidating the currently used simplifications of randomly oriented particles. Vertically resolved measurements of dust orientation can be acquired with a polarization lidar designed to target the off-diagonal elements of the backscatter matrix which are nonzero only when the particles are oriented. Building on previous studies, we constructed a lidar system emitting linearly and elliptically polarized light at 1064 nm and detecting the linear and circular polarization of the backscattered light. Its measurements provide direct flags of dust orientation, as well as more detailed information of the particle microphysics. The system also has the capability to acquire measurements at varying viewing angles. Moreover, in order to achieve good signal-to-noise ratio in short measurement times, the system is equipped with two laser sources emitting in an interleaved fashion and two telescopes for detecting the backscattered light from both lasers. Herein we provide a description of the optical and mechanical parts of this new lidar system, the scientific and technical objectives of its design, and the calibration methodologies tailored for the measurements of oriented dust particles. We also provide the first, preliminary measurements of the system during a dust-free day. The work presented does not include the detection of oriented dust (or other oriented particles), and therefore the instrument has not been tested fully in this objective.

2021 ◽  
Vol 13 (23) ◽  
pp. 4885
Mengmeng Shen ◽  
Feng He ◽  
Zhen Dong ◽  
Xing Chen ◽  
Lei Yu ◽  

Wideband radar has high-range directional resolution, which can effectively reduce the fluctuation of echo and improve the detection probability of a target under the same detection probability requirement. In this paper, a unified wideband radar χ2 distribution target model with more practical significance is innovatively established, on which the probability density function and detection probability function of Swerling 0, Swerling II and Swerling IV targets are analyzed, respectively. A generalized “frequency diversity gain” of wideband radar is proposed and defined based on the contradiction between suppression of fluctuation and accumulation loss, which represents the ratio of Signal-to-Noise Ratio (SNR) gain between broadband signal and reference bandwidth signal under the same condition (when the reference bandwidth is used, the radar target has only one range unit), and the mathematical relation equation of the target detection performance and signal bandwidth (equivalent to the number of distinguishable range elements of the target) is given. A Monte Carlo simulation experiment is designed. Based on the target model established in this paper, the optimal number of target range units corresponding to different detection probability requirements is obtained, which verifies the correctness of the concept proposed in this paper.

2021 ◽  
Vol 922 (2) ◽  
pp. 187
Annalisa Citro ◽  
Dawn K. Erb ◽  
Max Pettini ◽  
Matthew W. Auger ◽  
George D. Becker ◽  

Abstract Detailed analyses of high-redshift galaxies are challenging because these galaxies are faint, but this difficulty can be overcome with gravitational lensing, in which the magnification of the flux enables spectroscopy with a high signal-to-noise ratio (S/N). We present the rest-frame ultraviolet (UV) Keck Echellette Spectrograph and Imager (ESI) spectrum of the newly discovered z = 2.79 lensed galaxy SDSS J1059+4251. With an observed magnitude F814W = 18.8 and a magnification factor μ = 31 ± 3, J1059+4251 is both highly magnified and intrinsically luminous, about two magnitudes brighter than M UV * at z ∼ 2–3. With a stellar mass M * = (3.22 ± 0.20) × 1010 M ⊙, star formation rate SFR = 50 ± 7 M⊙ yr−1, and stellar metallicity Z * ≃ 0.15–0.5 Z ⊙, J1059+4251 is typical of bright star-forming galaxies at similar redshifts. Thanks to the high S/N and the spectral resolution of the ESI spectrum, we are able to separate the interstellar and stellar features and derive properties that would be inaccessible without the aid of the lensing. We find evidence of a gas outflow with speeds up to −1000 km s−1, and of an inflow that is probably due to accreting material seen along a favorable line of sight. We measure relative elemental abundances from the interstellar absorption lines and find that α-capture elements are overabundant compared to iron-peak elements, suggestive of rapid star formation. However, this trend may also be affected by dust depletion. Thanks to the high data quality, our results represent a reliable step forward in the characterization of typical galaxies at early cosmic epochs.

Geophysics ◽  
2021 ◽  
pp. 1-62
Wencheng Yang ◽  
Xiao Li ◽  
Yibo Wang ◽  
Yue Zheng ◽  
Peng Guo

As a key monitoring method, the acoustic emission (AE) technique has played a critical role in characterizing the fracturing process of laboratory rock mechanics experiments. However, this method is limited by low signal-to-noise ratio (SNR) because of a large amount of noise in the measurement and environment and inaccurate AE location. Furthermore, it is difficult to distinguish two or more hits because their arrival times are very close when AE signals are mixed with the strong background noise. Thus, we propose a new method for detecting weak AE signals using the mathematical morphology character correlation of the time-frequency spectrum. The character in all hits of an AE event can be extracted from time-frequency spectra based on the theory of mathematical morphology. Through synthetic and real data experiments, we determined that this method accurately identifies weak AE signals. Compared with conventional methods, the proposed approach can detect AE signals with a lower SNR.

2021 ◽  
Vol 9 (12) ◽  
pp. 1337
Shuai Yao ◽  
Yinjia Liu

For tackling the challenge of in-time searching a sea-crashed plane, it is critical to develop a convenient and reliable detector for the underwater beacon signal. In the application of signal detection, a conventional detector such as linear correlation (LC) is used based on the assumption of Gaussian white noise, but it has turned out to be a poor choice in a sophisticated underwater environment. To address this issue, a novel feature-based detector using superimposed envelope spectrum (SES) of multi-pulses is proposed in this paper. The proposed detector firstly extracts the envelopes of the received multi-pulse signals and superimposes the envelopes according to the known period. Then, the harmonic features of the SES are derived and utilized in the feature judgment to make the final decision. The proposed method is evaluated together with several existing state-of-the-art detectors, including the matched filter (MF), the generalized likelihood ratio test (GRLT) detector, and the periodogram of the directly dislocation superposition (PDDS) detectors with constant false alarm probability. Compared with the conventional detectors, it is found that the proposed SES detector is more robust against the colored noise, the random phase, and the channel distortions caused by the sophisticated underwater environment. Simulation results show that, given a detection probability value of 90% and a false alarm probability value of 1%, the proposed detector shows a gain of 3–12 dB compared with the best one of the MF, GRLT, and the PDDS detectors under distorted channels in terms of signal-to-noise ratio (SNR) requirements, respectively. Experimental results based on lake trial data have also verified the validity and feasibility of the proposed feature-based detector.

2021 ◽  
Vol 11 (3) ◽  
pp. 162-176
Muhammad Riza Darmawan ◽  
Nurul Aini ◽  
Awangga Febian Surya Admaja ◽  
Catur Apriono ◽  

Labuan Bajo and Komodo National Park (KNP) are the government's agendas in the tourism sector by making the area a premium tourist destination. On that basis, the tourism potential of the region requires infrastructure development to support this plan. One of the critical infrastructures is telecommunications, where the region does not have a direct fiber-optic line. In this paper, the authors propose two scenarios design of fiber-optic networks that also consider the potential for an upward fault earthquake in the northern waters of Labuan Bajo and KNP. The design is analyzed using calculation results of the power link budget, rise time, bit error rate (BER), and Signal to Noise Ratio. The BER value obtained is 5.63 x 10-13, which is still below the parameter threshold of 10-12 with a design that avoids the epicenter of the disaster and a longer route. The SNR value on the longest route (route 7) is 34.69 dB. The SNR value has met the SNR standard, which is 21.5 dB.

W. X. Er ◽  
W. J. Lim ◽  
Y. Dwihapsari ◽  
M. N. A. Awang ◽  
A. N. Yusoff

Abstract Background Agar has been commonly used as one of the materials to fabricate magnetic resonance imaging phantoms in the past few decades. In this study, eleven agar gel phantoms with different iron (III) oxide (Fe2O3) masses were prepared. This study was aimed to evaluate the signal-to-noise ratio (SNR) uniformity and stability of agar gel phantoms with and without the addition of Fe2O3 at two different time points (TPs). Fe2O3 powder was used as a relaxation modifier to manipulate and produce various SNR, T1 and T2 values. These phantoms were scanned using turbo spin echo pulse sequence to produce T1- and T2-measurement images. The SNR was then computed by plotting 1, 3 and 25 regions of interest on the images using ImageJ software. The T1 and T2 relaxation equations were then fitted to the experimental results of SNR versus TR and SNR versus TE curves for the determination of saturation (SNRo), T1 and T2 values. Results The results demonstrated that the agar gel phantoms were able to maintain SNR uniformity but not SNR stability after 4 weeks of phantom preparation. The change in the water content and microstructure of the phantoms have no significant effect on T2 relaxation but on T1 relaxation. The T1 and T2 of the agar gel phantoms were minimally affected although there was a systemic increase in the content of the Fe2O3 powder. Conclusions It can be concluded that the agar gel phantoms exhibited the characteristics of SNR uniformity, but they showed instability of SNR at TP2. The Fe2O3 in powder form is not an effective relaxation modifier to reduce the T1 and T2 when it is introduced into the agar gel phantoms. Dissolved nanosized particles should be the focus of future studies.

2021 ◽  
Vol 7 (12) ◽  
pp. 253
Luigi Cimmino

Radiographic imaging with muons, also called Muography, is based on the measurement of the absorption of muons, generated by the interaction of cosmic rays with the earth’s atmosphere, in matter. Muons are elementary particles with high penetrating power, a characteristic that makes them capable of crossing bodies of dimensions of the order of hundreds of meters. The interior of bodies the size of a pyramid or a volcano can be seen directly with the use of this technique, which can rely on highly segmented muon trackers. Since the muon flux is distributed in energy over a wide spectrum that depends on the direction of incidence, the main difference with radiography made with X-rays is in the source. The source of muons is not tunable, neither in energy nor in direction; to improve the signal-to-noise ratio, muography requires large instrumentation, long time data acquisition and high background rejection capacity. Here, we present the principles of the Muography, illustrating how radiographic images can be obtained, starting from the measurement of the attenuation of the muon flux through an object. It will then be discussed how recent technologies regarding artificial intelligence can give an impulse to this methodology in order to improve its results.

Sign in / Sign up

Export Citation Format

Share Document