Combinatorics Probability Computing
Latest Publications


TOTAL DOCUMENTS

1559
(FIVE YEARS 160)

H-INDEX

43
(FIVE YEARS 2)

Published By Cambridge University Press

1469-2163, 0963-5483

Author(s):  
Tony Huynh ◽  
Gwenaël Joret ◽  
David R. Wood

Abstract Given a fixed graph H that embeds in a surface $\Sigma$ , what is the maximum number of copies of H in an n-vertex graph G that embeds in $\Sigma$ ? We show that the answer is $\Theta(n^{f(H)})$ , where f(H) is a graph invariant called the ‘flap-number’ of H, which is independent of $\Sigma$ . This simultaneously answers two open problems posed by Eppstein ((1993) J. Graph Theory17(3) 409–416.). The same proof also answers the question for minor-closed classes. That is, if H is a $K_{3,t}$ minor-free graph, then the maximum number of copies of H in an n-vertex $K_{3,t}$ minor-free graph G is $\Theta(n^{f'(H)})$ , where f′(H) is a graph invariant closely related to the flap-number of H. Finally, when H is a complete graph we give more precise answers.


Author(s):  
Matthew Jenssen ◽  
Will Perkins ◽  
Aditya Potukuchi

Abstract We determine the asymptotics of the number of independent sets of size $\lfloor \beta 2^{d-1} \rfloor$ in the discrete hypercube $Q_d = \{0,1\}^d$ for any fixed $\beta \in (0,1)$ as $d \to \infty$ , extending a result of Galvin for $\beta \in (1-1/\sqrt{2},1)$ . Moreover, we prove a multivariate local central limit theorem for structural features of independent sets in $Q_d$ drawn according to the hard-core model at any fixed fugacity $\lambda>0$ . In proving these results we develop several general tools for performing combinatorial enumeration using polymer models and the cluster expansion from statistical physics along with local central limit theorems.


Author(s):  
Maciej Bendkowski ◽  
Olivier Bodini ◽  
Sergey Dovgal

Abstract Combinatorial samplers are algorithmic schemes devised for the approximate- and exact-size generation of large random combinatorial structures, such as context-free words, various tree-like data structures, maps, tilings, RNA molecules. They can be adapted to combinatorial specifications with additional parameters, allowing for a more flexible control over the output profile of parametrised combinatorial patterns. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain sub-patterns in generated strings. However, such a flexible control requires an additional and nontrivial tuning procedure. Using techniques of convex optimisation, we present an efficient tuning algorithm for multi-parametric combinatorial specifications. Our algorithm works in polynomial time in the system description length, the number of tuning parameters, the number of combinatorial classes in the specification, and the logarithm of the total target size. We demonstrate the effectiveness of our method on a series of practical examples, including rational, algebraic, and so-called Pólya specifications. We show how our method can be adapted to a broad range of less typical combinatorial constructions, including symmetric polynomials, labelled sets and cycles with cardinality lower bounds, simple increasing trees or substitutions. Finally, we discuss some practical aspects of our prototype tuner implementation and provide its benchmark results.


Author(s):  
Peter Allen ◽  
Julia Böttcher ◽  
Julia Ehrenmüller ◽  
Jakob Schnitzer ◽  
Anusch Taraz

Abstract The bandwidth theorem of Böttcher, Schacht and Taraz states that any n-vertex graph G with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)n$ contains all n-vertex k-colourable graphs H with bounded maximum degree and bandwidth o(n). Recently, a subset of the authors proved a random graph analogue of this statement: for $p\gg \big(\tfrac{\log n}{n}\big)^{1/\Delta}$ a.a.s. each spanning subgraph G of G(n,p) with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)pn$ contains all n-vertex k-colourable graphs H with maximum degree $\Delta$ , bandwidth o(n), and at least $C p^{-2}$ vertices not contained in any triangle. This restriction on vertices in triangles is necessary, but limiting. In this paper, we consider how it can be avoided. A special case of our main result is that, under the same conditions, if additionally all vertex neighbourhoods in G contain many copies of $K_\Delta$ then we can drop the restriction on H that $Cp^{-2}$ vertices should not be in triangles.


Author(s):  
Vojtech Rödl ◽  
Marcelo Sales

Abstract Let $\mathrm{AP}_k=\{a,a+d,\ldots,a+(k-1)d\}$ be an arithmetic progression. For $\varepsilon>0$ we call a set $\mathrm{AP}_k(\varepsilon)=\{x_0,\ldots,x_{k-1}\}$ an $\varepsilon$ -approximate arithmetic progression if for some a and d, $|x_i-(a+id)|<\varepsilon d$ holds for all $i\in\{0,1\ldots,k-1\}$ . Complementing earlier results of Dumitrescu (2011, J. Comput. Geom.2(1) 16–29), in this paper we study numerical aspects of Van der Waerden, Szemerédi and Furstenberg–Katznelson like results in which arithmetic progressions and their higher dimensional extensions are replaced by their $\varepsilon$ -approximation.


Author(s):  
Vishesh Jain ◽  
Ashwin Sah ◽  
Mehtaab Sawhney

Abstract We show that for an $n\times n$ random symmetric matrix $A_n$ , whose entries on and above the diagonal are independent copies of a sub-Gaussian random variable $\xi$ with mean 0 and variance 1, \begin{equation*}\mathbb{P}[s_n(A_n) \le \epsilon/\sqrt{n}] \le O_{\xi}(\epsilon^{1/8} + \exp(\!-\Omega_{\xi}(n^{1/2}))) \quad \text{for all } \epsilon \ge 0.\end{equation*} This improves a result of Vershynin, who obtained such a bound with $n^{1/2}$ replaced by $n^{c}$ for a small constant c, and $1/8$ replaced by $(1/8) - \eta$ (with implicit constants also depending on $\eta > 0$ ). Furthermore, when $\xi$ is a Rademacher random variable, we prove that \begin{equation*}\mathbb{P}[s_n(A_n) \le \epsilon/\sqrt{n}] \le O(\epsilon^{1/8} + \exp(\!-\Omega((\!\log{n})^{1/4}n^{1/2}))) \quad \text{for all } \epsilon \ge 0.\end{equation*} The special case $\epsilon = 0$ improves a recent result of Campos, Mattos, Morris, and Morrison, which showed that $\mathbb{P}[s_n(A_n) = 0] \le O(\exp(\!-\Omega(n^{1/2}))).$ Notably, in a departure from the previous two best bounds on the probability of singularity of symmetric matrices, which had relied on somewhat specialized and involved combinatorial techniques, our methods fall squarely within the broad geometric framework pioneered by Rudelson and Vershynin, and suggest the possibility of a principled geometric approach to the study of the singular spectrum of symmetric random matrices. The main innovations in our work are new notions of arithmetic structure – the Median Regularized Least Common Denominator (MRLCD) and the Median Threshold, which are natural refinements of the Regularized Least Common Denominator (RLCD)introduced by Vershynin, and should be more generally useful in contexts where one needs to combine anticoncentration information of different parts of a vector.


Author(s):  
Alejandro H. Morales ◽  
Igor Pak ◽  
Martin Tassy

Abstract We prove and generalise a conjecture in [MPP4] about the asymptotics of $\frac{1}{\sqrt{n!}} f^{\lambda/\mu}$ , where $f^{\lambda/\mu}$ is the number of standard Young tableaux of skew shape $\lambda/\mu$ which have stable limit shape under the $1/\sqrt{n}$ scaling. The proof is based on the variational principle on the partition function of certain weighted lozenge tilings.


Author(s):  
Markus Kuba ◽  
Alois Panholzer

Abstract In this work we analyse bucket increasing tree families. We introduce two simple stochastic growth processes, generating random bucket increasing trees of size n, complementing the earlier result of Mahmoud and Smythe (1995, Theoret. Comput. Sci.144 221–249.) for bucket recursive trees. On the combinatorial side, we define multilabelled generalisations of the tree families d-ary increasing trees and generalised plane-oriented recursive trees. Additionally, we introduce a clustering process for ordinary increasing trees and relate it to bucket increasing trees. We discuss in detail the bucket size two and present a bijection between such bucket increasing tree families and certain families of graphs called increasing diamonds, providing an explanation for phenomena observed by Bodini et al. (2016, Lect. Notes Comput. Sci.9644 207–219.). Concerning structural properties of bucket increasing trees, we analyse the tree parameter $K_n$ . It counts the initial bucket size of the node containing label n in a tree of size n and is closely related to the distribution of node types. Additionally, we analyse the parameters descendants of label j and degree of the bucket containing label j, providing distributional decompositions, complementing and extending earlier results (Kuba and Panholzer (2010), Theoret. Comput. Sci.411(34–36) 3255–3273.).


Author(s):  
Matthew Coulson

Abstract We consider the component structure of the random digraph D(n,p) inside the critical window $p = n^{-1} + \lambda n^{-4/3}$ . We show that the largest component $\mathcal{C}_1$ has size of order $n^{1/3}$ in this range. In particular we give explicit bounds on the tail probabilities of $|\mathcal{C}_1|n^{-1/3}$ .


Author(s):  
Lowell Abrams ◽  
Joanna A. Ellis-Monaghan

Abstract We define a new ribbon group action on ribbon graphs that uses a semidirect product of a permutation group and the original ribbon group of Ellis-Monaghan and Moffatt to take (partial) twists and duals, or twuals, of ribbon graphs. A ribbon graph is a fixed point of this new ribbon group action if and only if it is isomorphic to one of its (partial) twuals. This extends the original ribbon group action, which only used the canonical identification of edges, to the more natural setting of self-twuality up to isomorphism. We then show that every ribbon graph has in its orbit an orientable embedded bouquet and prove that the (partial) twuality properties of these bouquets propagate through their orbits. Thus, we can determine (partial) twualities via these one vertex graphs, for which checking isomorphism reduces simply to checking dihedral group symmetries. Finally, we apply the new ribbon group action to generate all self-trial ribbon graphs on up to seven edges, in contrast with the few, large, very high-genus, self-trial regular maps found by Wilson, and by Jones and Poultin. We also show how the automorphism group of a ribbon graph yields self-dual, -petrial or –trial graphs in its orbit, and produce an infinite family of self-trial graphs that do not arise as covers or parallel connections of regular maps, thus answering a question of Jones and Poulton.


Sign in / Sign up

Export Citation Format

Share Document