scholarly journals The mapping class group action on -character varieties

2020 ◽  
pp. 1-15
Author(s):  
WILLIAM M. GOLDMAN ◽  
SEAN LAWTON ◽  
EUGENE Z. XIA

Let $\unicode[STIX]{x1D6F4}$ be a compact orientable surface of genus $g=1$ with $n=1$ boundary component. The mapping class group $\unicode[STIX]{x1D6E4}$ of $\unicode[STIX]{x1D6F4}$ acts on the $\mathsf{SU}(3)$ -character variety of $\unicode[STIX]{x1D6F4}$ . We show that the action is ergodic with respect to the natural symplectic measure on the character variety.

Author(s):  
Leah Childers ◽  
Dan Margalit

This chapter considers the mapping class group, the group of symmetries of a surface, and some of its basic properties. It first provides an overview of surfaces and the concept of homeomorphism before giving examples of homeomorphisms and defining the mapping class group as a certain quotient of the group of homeomorphisms of a surface. It then looks at Dehn twists and describes some of the relations they satisfy. It also presents a theorem stating that the mapping class group of a compact orientable surface is generated by Dehn twists and proves it. It concludes with some projects and open problems. The discussion also includes various exercises.


2020 ◽  
Vol 71 (2) ◽  
pp. 539-555
Author(s):  
Miguel A Maldonado ◽  
Miguel A Xicoténcatl

Abstract The mapping class group $\Gamma ^k(N_g)$ of a non-orientable surface with punctures is studied via classical homotopy theory of configuration spaces. In particular, we obtain a non-orientable version of the Birman exact sequence. In the case of ${\mathbb{R}} \textrm{P}^2$, we analyze the Serre spectral sequence of a fiber bundle $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k \to X_k \to BSO(3)$ where $X_k$ is a $K(\Gamma ^k({\mathbb{R}} \textrm{P}^2),1)$ and $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k$ denotes the configuration space of unordered $k$-tuples of distinct points in ${\mathbb{R}} \textrm{P}^2$. As a consequence, we express the mod-2 cohomology of $\Gamma ^k({\mathbb{R}} \textrm{P}^2)$ in terms of that of $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k$.


2011 ◽  
Vol 03 (03) ◽  
pp. 265-306 ◽  
Author(s):  
ANDREW PUTMAN

We calculate the first homology group of the mapping class group with coefficients in the first rational homology group of the universal abelian ℤ/L-cover of the surface. If the surface has one marked point, then the answer is ℚτ(L), where τ(L) is the number of positive divisors of L. If the surface instead has one boundary component, then the answer is ℚ. We also perform the same calculation for the level L subgroup of the mapping class group. Set HL = H1(Σg; ℤ/L). If the surface has one marked point, then the answer is ℚ[HL], the rational group ring of HL. If the surface instead has one boundary component, then the answer is ℚ.


2014 ◽  
Vol 157 (2) ◽  
pp. 345-355
Author(s):  
SUSUMU HIROSE ◽  
MASATOSHI SATO

AbstractWe construct a minimal generating set of the level 2 mapping class group of a nonorientable surface of genus g, and determine its abelianization for g ≥ 4.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650022
Author(s):  
Byung Hee An

In this paper, we compute the automorphism groups [Formula: see text] and [Formula: see text] of braid groups [Formula: see text] and [Formula: see text] on every orientable surface [Formula: see text], which are isomorphic to group extensions of the extended mapping class group [Formula: see text] by the transvection subgroup except for a few cases. We also prove that [Formula: see text] is always a characteristic subgroup of [Formula: see text], unless [Formula: see text] is a twice-punctured sphere and [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document