Sliding instability of draining fluid films

2018 ◽  
Vol 857 ◽  
pp. 111-141 ◽  
Author(s):  
Georg F. Dietze ◽  
Jason R. Picardo ◽  
R. Narayanan

The aim of this paper is to show that the spontaneous sliding of drops forming from an interfacial instability on the surface of a wall-bounded fluid film is caused by a symmetry-breaking secondary instability. As an example, we consider a water film suspended from a ceiling that drains into drops due to the Rayleigh–Taylor instability. Loss of symmetry is observed after the film has attained a quasi-steady state, following the buckling of the thin residual film separating two drops, whereby two extremely thin secondary troughs are generated. Instability emanates from these secondary troughs, which are very sensitive to surface curvature perturbations because drainage there is dominated by capillary pressure gradients. We have performed two types of linear stability analysis. Firstly, applying the frozen-time approximation to the quasi-steady base state and assuming exponential temporal growth, we have identified a single, asymmetric, unstable eigenmode, constituting a concerted sliding motion of the large drops and secondary troughs. Secondly, applying transient stability analysis to the time-dependent base state, we have found that the latter is unstable at all times after the residual film has buckled, and that localized pulses at the secondary troughs are most effective in triggering the aforementioned sliding eigenmode. The onset of sliding is controlled by the level of ambient noise, but, in the range studied, always occurs in the quasi-steady regime of the base state. The sliding instability is also observed in a very thin gas film underneath a liquid layer, which we have checked for physical properties encountered underneath Leidenfrost drops. In contrast, adding Marangoni stresses to the problem substantially modifies the draining mechanism and can suppress the sliding instability.

1995 ◽  
Vol 10 (1) ◽  
pp. 210-219 ◽  
Author(s):  
A. Llamas ◽  
J. De La Ree Lopez ◽  
L. Mili ◽  
A.G. Phadke ◽  
J.S. Thorp

Author(s):  
Luohui Ouyang ◽  
Qingzhen Bi ◽  
Hua Chen ◽  
Hai Shang ◽  
Li-Min Zhu

Abstract Blisks suffer from flutter, a self-sustained vibration caused by aerodynamic coupled forces. This instability could cause serious damage to the blades and the machine. Flutter stability is usually analyzed based on the eigenvalue method in the aspect of the linear structural dynamic system, which transforms a dynamics stability analysis into a point of equilibrium in an infinite time scale. However, in reality, most of the blisk vibrations arise on a finite time horizon. The transient vibration amplification may cause serious damage. This paper proposes a transient flutter stability analysis method in a finite time for structural mistuned blisk based on the energy growth method. Firstly, two common blisk models coupled aerodynamic force with different complexity are built, and are all expressed in the state space representation. A novel energy growth method is then employed to analyze the transient stability and to find the maximum energy growth of the models. The optimal initial condition which leads to the maximum energy growth is obtained. A new flutter stability criterion is developed to consider the transient stability based on the energy growth method and the infinite time stability based on the eigenvalue method. The new transient stability method is verified by two numerical studies. It is found that the structural mistuned blisk model which is traditionally predicted stable still has a transient instability in a finite time due to the non-normal property of the dynamic state matrix.


2018 ◽  
Vol 860 ◽  
pp. 608-639 ◽  
Author(s):  
Gianluca Lavalle ◽  
Yiqin Li ◽  
Sophie Mergui ◽  
Nicolas Grenier ◽  
Georg F. Dietze

We revisit the linear stability of a falling liquid film flowing through an inclined narrow channel in interaction with a gas phase. We focus on a particular region of parameter space, small inclination and very strong confinement, where we have found the gas to strongly stabilize the film, up to the point of fully suppressing the long-wave interfacial instability attributed to Kapitza (Zh. Eksp. Teor. Fiz., vol. 18 (1), 1948, pp. 3–28). The stabilization occurs both when the gas is merely subject to an aerostatic pressure difference, i.e. when the pressure difference balances the weight of the gas column, and when it flows counter-currently. In the latter case, the degree of stabilization increases with the gas velocity. Our investigation is based on a numerical solution of the Orr–Sommerfeld temporal linear stability problem as well as stability experiments that clearly confirm the observed effect. We quantify the degree of stabilization by comparing the linear stability threshold with its passive-gas limit, and perform a parametric study, varying the relative confinement, the Reynolds number, the inclination angle and the Kapitza number. For example, we find a 30 % reduction of the cutoff wavenumber of the instability for a water film in contact with air, flowing through a channel inclined at $3^{\circ }$ and of height 2.8 times the film thickness. We also identify the critical conditions for the full suppression of the instability in terms of the governing parameters. The stabilization is caused by the strong confinement of the gas, which produces perturbations of the adverse interfacial tangential shear stress that are shifted by half a wavelength with respect to the wavy film surface. This tends to reduce flow-rate variations within the film, thus attenuating the inertia-based driving mechanism of the Kapitza instability.


Sign in / Sign up

Export Citation Format

Share Document