Oscillations for order statistics of some discrete processes

2020 ◽  
Vol 57 (3) ◽  
pp. 703-719
Author(s):  
Andrea Ottolini

AbstractSuppose k balls are dropped into n boxes independently with uniform probability, where n, k are large with ratio approximately equal to some positive real $\lambda$ . The maximum box count has a counterintuitive behavior: first of all, with high probability it takes at most two values $m_n$ or $m_n+1$ , where $m_n$ is roughly $\frac{\ln n}{\ln \ln n}$ . Moreover, it oscillates between these two values with an unusual periodicity. In order to prove this statement and various generalizations, it is first shown that for $X_1,\ldots,X_n$ independent and identically distributed discrete random variables with common distribution F, under mild conditions, the limiting distribution of their maximum oscillates in three possible families, depending on the tail of the distribution. The result stated at the beginning follows from the ensemble equivalence for the order statistics in various allocations problems, obtained via conditioning limit theory. Results about the number of ties for the maximum, as well as applications, are also provided.

1978 ◽  
Vol 15 (03) ◽  
pp. 639-644 ◽  
Author(s):  
Peter Hall

LetXn1≦Xn2≦ ··· ≦Xnndenote the order statistics from a sample ofnindependent, identically distributed random variables, and suppose that the variablesXnn, Xn,n–1, ···, when suitably normalized, have a non-trivial limiting joint distributionξ1,ξ2, ···, asn → ∞. It is well known that the limiting distribution must be one of just three types. We provide a canonical representation of the stochastic process {ξn,n≧ 1} in terms of exponential variables, and use this representation to obtain limit theorems forξnasn →∞.


1980 ◽  
Vol 17 (02) ◽  
pp. 570-573 ◽  
Author(s):  
Barry C. Arnold

Let X 1, X 2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X 1:n , X 2:n , …, Xn :n. If the Xi 's have a geometric distribution then the conditional distribution of Xk +1:n – Xk :n given Xk+ 1:n – Xk :n > 0 is the same as the distribution of X 1:n–k . Also the random variable X 2:n – X 1:n is independent of the event [X 1:n = 1]. Under mild conditions each of these two properties characterizes the geometric distribution.


1995 ◽  
Vol 118 (2) ◽  
pp. 375-382 ◽  
Author(s):  
Sándor Csörgő ◽  
László Viharos

Let X, X1, X2, …, be independent random variables with a common distribution function F(x) = P {X ≤ x}, x∈ℝ, and for each n∈ℕ, let X1, n ≤ … ≤ Xn, n denote the order statistics pertaining to the sample X1, …, Xn. We assume that 1–F(x) = x−1/cl(x), 0 < x < ∞, where l is some function slowly varying at infinity and c > 0 is any fixed number. The class of all such distribution functions will be denoted by .


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 192-196
Author(s):  
Bahadır Yüzbaşı ◽  
Yunus Bulut ◽  
Mehmet Güngör

AbstractIn this study, pf and df of single order statistic of nonidentical discrete random variables are obtained. These functions are also expressed in integral form. Finally, pf and df of extreme of order statistics of random variables for the nonidentical discrete case are given.


2013 ◽  
Vol 28 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Qing Liu ◽  
Tiantian Mao ◽  
Taizhong Hu

Let X1, …, Xn be non-negative, independent and identically distributed random variables with a common distribution function F, and denote by X1:n ≤ ··· ≤ Xn:n the corresponding order statistics. In this paper, we investigate the second-order regular variation (2RV) of the tail probabilities of Xk:n and Xj:n − Xi:n under the assumption that $\bar {F}$ is of the 2RV, where 1 ≤ k ≤ n and 1 ≤ i < j ≤ n.


1980 ◽  
Vol 17 (2) ◽  
pp. 570-573 ◽  
Author(s):  
Barry C. Arnold

Let X1, X2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X1:n, X2:n, …, Xn:n. If the Xi's have a geometric distribution then the conditional distribution of Xk+1:n – Xk:n given Xk+1:n – Xk:n > 0 is the same as the distribution of X1:n–k. Also the random variable X2:n – X1:n is independent of the event [X1:n = 1]. Under mild conditions each of these two properties characterizes the geometric distribution.


1978 ◽  
Vol 15 (3) ◽  
pp. 639-644 ◽  
Author(s):  
Peter Hall

Let Xn1 ≦ Xn2 ≦ ··· ≦ Xnn denote the order statistics from a sample of n independent, identically distributed random variables, and suppose that the variables Xnn, Xn, n–1, ···, when suitably normalized, have a non-trivial limiting joint distribution ξ1, ξ2, ···, as n → ∞. It is well known that the limiting distribution must be one of just three types. We provide a canonical representation of the stochastic process {ξn, n ≧ 1} in terms of exponential variables, and use this representation to obtain limit theorems for ξ n as n →∞.


1987 ◽  
Vol 101 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Erich Haeusler ◽  
David M. Mason

AbstractLet X1, X2, …, be a sequence of independent random variables with common distribution function F in the domain of attraction of a stable law and, for each n ≥ 1, let X1, n ≤ … ≤ Xn, n denote the order statistics based on the first n of these random variables. It is shown that sums of the middle portion of the order statistics of the form , where (kn)n ≥ 1 is a sequence of non-negative integers such that kn → ∞ and kn/n → 0 as n → ∞ at an appropriate rate, can be normalized and centred so that the law of the iterated logarithm holds. The method of proof is based on the almost sure properties of weighted uniform empirical processes.


Sign in / Sign up

Export Citation Format

Share Document