Two characterizations of the geometric distribution

1980 ◽  
Vol 17 (02) ◽  
pp. 570-573 ◽  
Author(s):  
Barry C. Arnold

Let X 1, X 2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X 1:n , X 2:n , …, Xn :n. If the Xi 's have a geometric distribution then the conditional distribution of Xk +1:n – Xk :n given Xk+ 1:n – Xk :n > 0 is the same as the distribution of X 1:n–k . Also the random variable X 2:n – X 1:n is independent of the event [X 1:n = 1]. Under mild conditions each of these two properties characterizes the geometric distribution.

1980 ◽  
Vol 17 (2) ◽  
pp. 570-573 ◽  
Author(s):  
Barry C. Arnold

Let X1, X2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X1:n, X2:n, …, Xn:n. If the Xi's have a geometric distribution then the conditional distribution of Xk+1:n – Xk:n given Xk+1:n – Xk:n > 0 is the same as the distribution of X1:n–k. Also the random variable X2:n – X1:n is independent of the event [X1:n = 1]. Under mild conditions each of these two properties characterizes the geometric distribution.


1983 ◽  
Vol 20 (01) ◽  
pp. 209-212 ◽  
Author(s):  
M. Sreehari

Let X 1, X 2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X 1:n , X 2:n , …, X n:n . We prove that if the random variable X2:n – X 1:n is independent of the events [X1:n = m] and [X1:n = k], for fixed k > m > 1, then the Xi 's are geometric. This is related to a characterization problem raised by Arnold (1980).


1983 ◽  
Vol 20 (1) ◽  
pp. 209-212 ◽  
Author(s):  
M. Sreehari

Let X1, X2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X1:n, X2:n, …, Xn:n. We prove that if the random variable X2:n – X1:n is independent of the events [X1:n = m] and [X1:n = k], for fixed k > m > 1, then the Xi's are geometric. This is related to a characterization problem raised by Arnold (1980).


2003 ◽  
Vol 40 (01) ◽  
pp. 226-241 ◽  
Author(s):  
Sunder Sethuraman

Let X 1, X 2, …, X n be a sequence of independent, identically distributed positive integer random variables with distribution function F. Anderson (1970) proved a variant of the law of large numbers by showing that the sample maximum moves asymptotically on two values if and only if F satisfies a ‘clustering’ condition, In this article, we generalize Anderson's result and show that it is robust by proving that, for any r ≥ 0, the sample maximum and other extremes asymptotically cluster on r + 2 values if and only if Together with previous work which considered other asymptotic properties of these sample extremes, a more detailed asymptotic clustering structure for discrete order statistics is presented.


2003 ◽  
Vol 40 (1) ◽  
pp. 226-241 ◽  
Author(s):  
Sunder Sethuraman

Let X1, X2, …, Xn be a sequence of independent, identically distributed positive integer random variables with distribution function F. Anderson (1970) proved a variant of the law of large numbers by showing that the sample maximum moves asymptotically on two values if and only if F satisfies a ‘clustering’ condition, In this article, we generalize Anderson's result and show that it is robust by proving that, for any r ≥ 0, the sample maximum and other extremes asymptotically cluster on r + 2 values if and only if Together with previous work which considered other asymptotic properties of these sample extremes, a more detailed asymptotic clustering structure for discrete order statistics is presented.


1991 ◽  
Vol 14 (4) ◽  
pp. 797-802 ◽  
Author(s):  
Tien-Chung Hu

LetXbe a real valued random variable withE|X|r+δ<∞for some positive integerrand real number,δ,0<δ≤r, and let{X,X1,X2,…}be a sequence of independent, identically distributed random variables. In this note, we prove that, for almost allw∈Ω,μr;n*(w)→μrwith probability1. iflimn→∞infm(n)n−β>0for someβ>r−δr+δ, whereμr;n*is the bootstraprthsample moment of the bootstrap sample some with sample sizem(n)from the data set{X,X1,…,Xn}andμris therthmoment ofX. The results obtained here not only improve on those of Athreya [3] but also the proof is more elementary.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Margaret Archibald ◽  
Arnold Knopfmacher ◽  
Toufik Mansour

International audience We investigate the probability that a random composition (ordered partition) of the positive integer $n$ has no parts occurring exactly $j$ times, where $j$ belongs to a specified finite $\textit{`forbidden set'}$ $A$ of multiplicities. This probability is also studied in the related case of samples $\Gamma =(\Gamma_1,\Gamma_2,\ldots, \Gamma_n)$ of independent, identically distributed random variables with a geometric distribution. Nous examinons la probabilité qu'une composition faite au hasard (une partition ordonnée) du nombre entier positif $n$ n'a pas de parties qui arrivent exactement $j$ fois, où $j$ appartient à une série interdite, finie et spécifiée $A$ de multiplicités. Cette probabilité est aussi étudiée dans le cas des suites $\Gamma =(\Gamma_1,\Gamma_2,\ldots,\Gamma_n)$ de variables aléatoires identiquement distribuées et indépendantes avec une distribution géométrique.


2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


2012 ◽  
Vol 49 (4) ◽  
pp. 1188-1193 ◽  
Author(s):  
Samim Ghamami ◽  
Sheldon M. Ross

The Asmussen–Kroese Monte Carlo estimators of P(Sn > u) and P(SN > u) are known to work well in rare event settings, where SN is the sum of independent, identically distributed heavy-tailed random variables X1,…,XN and N is a nonnegative, integer-valued random variable independent of the Xi. In this paper we show how to improve the Asmussen–Kroese estimators of both probabilities when the Xi are nonnegative. We also apply our ideas to estimate the quantity E[(SN-u)+].


1978 ◽  
Vol 15 (03) ◽  
pp. 639-644 ◽  
Author(s):  
Peter Hall

LetXn1≦Xn2≦ ··· ≦Xnndenote the order statistics from a sample ofnindependent, identically distributed random variables, and suppose that the variablesXnn, Xn,n–1, ···, when suitably normalized, have a non-trivial limiting joint distributionξ1,ξ2, ···, asn → ∞. It is well known that the limiting distribution must be one of just three types. We provide a canonical representation of the stochastic process {ξn,n≧ 1} in terms of exponential variables, and use this representation to obtain limit theorems forξnasn →∞.


Sign in / Sign up

Export Citation Format

Share Document