scholarly journals HIGHER DEFORMATIONS OF LIE ALGEBRA REPRESENTATIONS II

2020 ◽  
pp. 1-24
Author(s):  
MATTHEW WESTAWAY

Steinberg’s tensor product theorem shows that for semisimple algebraic groups, the study of irreducible representations of higher Frobenius kernels reduces to the study of irreducible representations of the first Frobenius kernel. In the preceding paper in this series, deforming the distribution algebra of a higher Frobenius kernel yielded a family of deformations called higher reduced enveloping algebras. In this paper, we prove that the Steinberg decomposition can be similarly deformed, allowing us to reduce representation theoretic questions about these algebras to questions about reduced enveloping algebras. We use this to derive structural results about modules over these algebras. Separately, we also show that many of the results in the preceding paper hold without an assumption of reductivity.

1963 ◽  
Vol 22 ◽  
pp. 33-56 ◽  
Author(s):  
Robert Steinberg

Our purpose here is to study the irreducible representations of semisimple algebraic groups of characteristic p 0, in particular the rational representations, and to determine all of the representations of corresponding finite simple groups. (Each algebraic group is assumed to be defined over a universal field which is algebraically closed and of infinite degree of transcendence over the prime field, and all of its representations are assumed to take place on vector spaces over this field.)


1980 ◽  
Vol 63 (1) ◽  
pp. 264-267 ◽  
Author(s):  
E Cline ◽  
B Parshall ◽  
L Scott

2001 ◽  
Vol 4 ◽  
pp. 135-169 ◽  
Author(s):  
Frank Lübeck

AbstractThe author has determined, for all simple simply connected reductive linear algebraic groups defined over a finite field, all the irreducible representations in their defining characteristic of degree below some bound. These also give the small degree projective representations in defining characteristic for the corresponding finite simple groups. For large rank l, this bound is proportional to l3, and for rank less than or equal to 11 much higher. The small rank cases are based on extensive computer calculations.


Sign in / Sign up

Export Citation Format

Share Document