linear algebraic groups
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Teresa Crespo ◽  
◽  
Zbigniew Hajto ◽  
Rouzbeh Mohseni ◽  
◽  
...  

In this paper, we establish Galois theory for partial differential systems defined over formally real differential fields with a real closed field of constants and over formally p-adic differential fields with a p-adically closed field of constants. For an integrable partial differential system defined over such a field, we prove that there exists a formally real (resp. formally p-adic) Picard-Vessiot extension. Moreover, we obtain a uniqueness result for this Picard-Vessiot extension. We give an adequate definition of the Galois differential group and obtain a Galois fundamental theorem in this setting. We apply the obtained Galois correspondence to characterise formally real Liouvillian extensions of real partial differential fields with a real closed field of constants by means of split solvable linear algebraic groups. We present some examples of real dynamical systems and indicate some possibilities of further development of algebraic methods in real dynamical systems.


2021 ◽  
pp. 1-33
Author(s):  
Jarek Kędra ◽  
Assaf Libman ◽  
Ben Martin

A group [Formula: see text] is called bounded if every conjugation-invariant norm on [Formula: see text] has finite diameter. We introduce various strengthenings of this property and investigate them in several classes of groups including semisimple Lie groups, arithmetic groups and linear algebraic groups. We provide applications to Hamiltonian dynamics.


Author(s):  
Olivier Benoist ◽  
Olivier Wittenberg

Abstract This article introduces and studies the tight approximation property, a property of algebraic varieties defined over the function field of a complex or real curve that refines the weak approximation property (and the known cohomological obstructions to it) by incorporating an approximation condition in the Euclidean topology. We prove that the tight approximation property is a stable birational invariant, is compatible with fibrations, and satisfies descent under torsors of linear algebraic groups. Its validity for a number of rationally connected varieties follows. Some concrete consequences are: smooth loops in the real locus of a smooth compactification of a real linear algebraic group, or in a smooth cubic hypersurface of dimension ≥ 2 {\geq 2} , can be approximated by rational algebraic curves; homogeneous spaces of linear algebraic groups over the function field of a real curve satisfy weak approximation.


2020 ◽  
Vol 156 (12) ◽  
pp. 2628-2649
Author(s):  
Yang Cao ◽  
Zhizhong Huang

In this article we establish the arithmetic purity of strong approximation for certain semisimple simply connected linear algebraic groups and their homogeneous spaces over a number field $k$. For instance, for any such group $G$ and for any open subset $U$ of $G$ with ${\mathrm {codim}}(G\setminus U, G)\geqslant 2$, we prove that (i) if $G$ is $k$-simple and $k$-isotropic, then $U$ satisfies strong approximation off any finite number of places; and (ii) if $G$ is the spin group of a non-degenerate quadratic form which is not compact over archimedean places, then $U$ satisfies strong approximation off all archimedean places. As a consequence, we prove that the same property holds for affine quadratic hypersurfaces. Our approach combines a fibration method with subgroup actions developed for induction on the codimension of $G\setminus U$, and an affine linear sieve which allows us to produce integral points with almost-prime polynomial values.


2020 ◽  
Vol 7 (3) ◽  
Author(s):  
Andrei S. Rapinchuk ◽  
Igor A. Rapinchuk

Sign in / Sign up

Export Citation Format

Share Document