Standing waves of modified Schrödinger equations coupled with the Chern–Simons gauge theory

2019 ◽  
Vol 150 (4) ◽  
pp. 1915-1936 ◽  
Author(s):  
Pietro d'Avenia ◽  
Alessio Pomponio ◽  
Tatsuya Watanabe

AbstractWe are interested in standing waves of a modified Schrödinger equation coupled with the Chern–Simons gauge theory. By applying a constraint minimization of Nehari-Pohozaev type, we prove the existence of radial ground state solutions. We also investigate the nonexistence for nontrivial solutions.

Author(s):  
Yingying Xiao ◽  
Chuanxi Zhu

In this paper, we study the following quasilinear Schrödinger equation − Δ u + V ( x ) u − κ u Δ ( u 2 ) + μ h 2 ( | x | ) | x | 2 ( 1 + κ u 2 ) u + μ ( ∫ | x | + ∞ h ( s ) s ( 2 + κ u 2 ( s ) ) u 2 ( s ) d s ) u = f ( u ) in   R 2 , κ > 0 V ∈ C 1 ( R 2 , R ) and f ∈ C ( R , R ) By using a constraint minimization of Pohožaev–Nehari type and analytic techniques, we obtain the existence of ground state solutions.


2018 ◽  
Vol 99 (2) ◽  
pp. 231-241
Author(s):  
SITONG CHEN ◽  
ZU GAO

By using variational and some new analytic techniques, we prove the existence of ground state solutions for the quasilinear Schrödinger equation with variable potentials and super-linear nonlinearities. Moreover, we establish a minimax characterisation of the ground state energy. Our result improves and extends the existing results in the literature.


2006 ◽  
Vol 2006 ◽  
pp. 1-7
Author(s):  
Guanggan Chen ◽  
Jian Zhang ◽  
Yunyun Wei

This paper is concerned with the nonlinear Schrödinger equation with an unbounded potential iϕt=−Δϕ+V(x)ϕ−μ|ϕ|p−1ϕ−λ|ϕ|q−1ϕ, x∈ℝN, t≥0, where μ>0, λ>0, and 1<p<q<1+4/N. The potential V(x) is bounded from below and satisfies V(x)→∞ as |x|→∞. From variational calculus and a compactness lemma, the existence of standing waves and their orbital stability are obtained.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Jing Chen ◽  
Zu Gao

Abstract We consider the following nonlinear fractional Schrödinger equation: $$ (-\triangle )^{s} u+V(x)u=g(u) \quad \text{in } \mathbb{R} ^{N}, $$ ( − △ ) s u + V ( x ) u = g ( u ) in  R N , where $s\in (0, 1)$ s ∈ ( 0 , 1 ) , $N>2s$ N > 2 s , $V(x)$ V ( x ) is differentiable, and $g\in C ^{1}(\mathbb{R} , \mathbb{R} )$ g ∈ C 1 ( R , R ) . By exploiting the minimization method with a constraint over Pohoz̆aev manifold, we obtain the existence of ground state solutions. With the help of Pohoz̆aev identity we also process the existence of the least energy solutions for the above equation. Our results improve the existing study on this nonlocal problem with Berestycki–Lions type nonlinearity to the one that does not need the oddness assumption.


Sign in / Sign up

Export Citation Format

Share Document