chern simons
Recently Published Documents


TOTAL DOCUMENTS

3684
(FIVE YEARS 491)

H-INDEX

90
(FIVE YEARS 10)

Author(s):  
Sylvain Lacroix

Abstract These lecture notes concern the semi-holomorphic 4d Chern-Simons theory and its applications to classical integrable field theories in 2d and in particular integrable sigma-models. After introducing the main properties of the Chern-Simons theory in 3d, we will define its 4d analogue and explain how it is naturally related to the Lax formalism of integrable 2d theories. Moreover, we will explain how varying the boundary conditions imposed on this 4d theory allows to recover various occurences of integrable sigma-models through this construction, in particular illustrating this on two simple examples: the Principal Chiral Model and its Yang-Baxter deformation. These notes were written for the lectures delivered at the school “Integrability, Dualities and Deformations”, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.


2022 ◽  
Vol 214 ◽  
pp. 112552
Author(s):  
Hsin-Yuan Huang ◽  
Youngae Lee ◽  
Sang-Hyuck Moon
Keyword(s):  
Rank 2 ◽  

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jeongho Kim ◽  
Bora Moon

<p style='text-indent:20px;'>We present two types of the hydrodynamic limit of the nonlinear Schrödinger-Chern-Simons (SCS) system. We consider two different scalings of the SCS system and show that each SCS system asymptotically converges towards the compressible and incompressible Euler system, coupled with the Chern-Simons equations and Poisson equation respectively, as the scaled Planck constant converges to 0. Our method is based on the modulated energy estimate. In the case of compressible limit, we observe that the classical theory of relative entropy method can be applied to show the hydrodynamic limit, with the additional quantum correction term. On the other hand, for the incompressible limit, we directly estimate the modulated energy to derive the desired asymptotic convergence.</p>


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Peng Cheng ◽  
Ruben Minasian ◽  
Stefan Theisen

Abstract We revisit the relation between the anomalies in four and six dimensions and the Chern-Simons couplings one dimension below. While the dimensional reduction of chiral theories is well-understood, the question which three and five-dimensional theories can come from a general circle reduction, and are hence liftable, is more subtle. We argue that existence of an anomaly cancellation mechanism is a necessary condition for liftability. In addition, the anomaly cancellation and the CS couplings in six and five dimensions respectively determine the central charges of string-like BPS objects that cannot be consistently decoupled from gravity, a.k.a. supergravity strings. Following the completeness conjecture and requiring that their worldsheet theory is unitary imposes bounds on the admissible theories. We argue that for the anomaly-free six-dimensional theories it is more advantageous to study the unitarity constraints obtained after reduction to five dimensions. In general these are slightly more stringent and can be cast in a more geometric form, highly reminiscent of the Kodaira positivity condition (KPC). Indeed, for the F-theoretic models which have an underlying Calabi-Yau threefold these can be directly compared. The unitarity constraints (UC) are in general weaker than KPC, and maybe useful in understanding the consistent models without F-theoretic realisation. We catalogue the cases when UC is more restrictive than KPC, hinting at more refined hidden structure in elliptic Calabi-Yau threefolds with certain singularity structure.


Author(s):  
S. Boukaddid ◽  
R. Ahl Laamara ◽  
L. B. Drissi ◽  
E. H. Saidi ◽  
J. Zerouaoui

In this paper, we study the M-string realization of chiral [Formula: see text]-super-conformal field theory in 6 dimensions and its orbifold compactification down to three-dimensional (3D). We analyze its fractionally charged BPS particle spectrum in connection with effective 3D Chern–Simons gauge theory and the supersymmetric fractional quantum Hall effect in [Formula: see text] dimensions. We construct the set of underlying fractionally charged BPS particles in the ground state of the compactified M string and find that it contains 144 BPS states that are generated by four basic quasi-particles (two bosonic-like and two fermionic like) and their CPT conjugate. Two representations of the gauge bosons and the gauginos as condensates of the basic quasiparticles are found and explicit realizations are also given. Other features concerning generalizations are also discussed.


Sign in / Sign up

Export Citation Format

Share Document