state energy
Recently Published Documents


TOTAL DOCUMENTS

2153
(FIVE YEARS 316)

H-INDEX

72
(FIVE YEARS 8)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 113
Author(s):  
Ignacio Baena ◽  
Pedro Pérez-Fernández ◽  
Manuela Rodríguez-Gallardo ◽  
José Miguel Arias

A quantum phase transition (QPT) in a simple model that describes the coexistence of atoms and diatomic molecules is studied. The model, which is briefly discussed, presents a second-order ground state phase transition in the thermodynamic (or large particle number) limit, changing from a molecular condensate in one phase to an equilibrium of diatomic molecules–atoms in coexistence in the other one. The usual markers for this phase transition are the ground state energy and the expected value of the number of atoms (alternatively, the number of molecules) in the ground state. In this work, other markers for the QPT, such as the inverse participation ratio (IPR), and particularly, the Rényi entropy, are analyzed and proposed as QPT markers. Both magnitudes present abrupt changes at the critical point of the QPT.


Significance The country has abundant renewable energy resources and substantial potential for green energy exports, but development to date has been minimal. Domestic firms are focused on the gas sector and foreign investors have been deterred by a hostile business environment. However, Algiers has taken steps recently to incentivise investment. Impacts The lack of development to date means the country’s emissions reduction targets are at risk of being missed. The December tender is likely to attract more interest than previous efforts because of changes to foreign investment conditions. Competition from new developers may prompt greater interest from Algeria’s state energy companies, in part to ward off challenges.


Author(s):  
XinYe Wang ◽  
YiFan Zhang ◽  
Ze Yu ◽  
Yuan Wu ◽  
Dongdong Wang ◽  
...  

TADF-sensitizing-fluorescence (TSF) strategy suffered a disturbing energy loss causing by the T1 states of fluorescence dopant (FD) due to its low T1-state energy and forbidden of radiative transition. We supposed...


Author(s):  
Xinyu Nie ◽  
Heyuan Liu ◽  
Weijie Wang ◽  
Pengkun Su ◽  
Jun Zhou ◽  
...  

Efficient singlet fission (SF) materials with relatively high triplet state energy and broadband light harvesting ability simultaneously have a greater advantage for its practical application into photovoltaics. Herein, we prepared...


2021 ◽  
Author(s):  
Ifeanyi Jude Njoku ◽  
Chibueze Paul Onyenegecha ◽  
Chioma J Okereke ◽  
Ekwevugbe Omugbe ◽  
Emeka Onyeocha

Abstract The study presents the thermodynamic properties of the Iodine and Scandium Flouride molecules with molecular Deng-Fan potential. The bound state energy solution of the radial Schrodinger equation is obtained via the formula method. The partition function and other thermodynamic properties are evaluated via the Poisson summation approach. The numerical values of energy of the I2 and ScF molecules are found to be in agreement with results obtained from other methods in the literature. The results further show that the partition function decreases, and then converges to a constant value as temperature increases.


2021 ◽  
Author(s):  
Yi-Cai Zhang

Abstract In this work, we investigate the bound states in a one-dimensional spin-1 flat band system with a Coulomb-like potential of type III, which has a unique non-vanishing matrix element in basis $|1\rangle$. It is found that, for such a kind of potential, there exists infinite bound states. Near the threshold of continuous spectrum, the bound state energy is consistent with the ordinary hydrogen-like atom energy level with Rydberg correction. In addition, the flat band has significant effects on the bound states. For example, there are infinite bound states which are generated from the flat band. Furthermore, when the potential is weak, the bound state energy is proportional to the potential strength $\alpha$. When the bound state energies are very near the flat band, they are inversely proportional to the natural number $n$ (e.g., $E_n\propto 1/n, n=1,2,3,...$). Further we find that the energy spectrum can be well described by quasi-classical approximation (WKB method). Finally, we give a critical potential strength $\alpha_c$ at which the bound state energy reaches the threshold of continuous spectrum. After crossing the threshold, the bound states in the continuum (BIC) would exist in such a flat band system.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 35
Author(s):  
Abhishek Shibu ◽  
Camilla Middleton ◽  
Carly O. Kwiatkowski ◽  
Meesha Kaushal ◽  
Jonathan H. Gillen ◽  
...  

The study of excited-state energy diffusion has had an important impact in the development and optimization of organic electronics. For instance, optimizing excited-state energy migration in the photoactive layer in an organic solar cell device has been shown to yield efficient solar energy conversion. Despite the crucial role that energy migration plays in molecular electronic device physics, there is still a great deal to be explored to establish how molecular orientation impacts energy diffusion mechanisms. In this work, we have synthesized a new library of solution-processable, Zn (alkoxycarbonyl)phenylporphyrins containing butyl (ZnTCB4PP), hexyl (ZnTCH4PP), 2-ethylhexyl (ZnTCEH4PP), and octyl (ZnTCO4PP) alkoxycarbonyl groups. We establish that, by varying the length of the peripheral alkyl chains on the metalloporphyrin macrocycle, preferential orientation and molecular self-assembly is observed in solution-processed thin films. The resultant arrangement of molecules consequently affects the electronic and photophysical characteristics of the metalloporphyrin thin films. The various molecular arrangements in the porphyrin thin films and their resultant impact were determined using UV-Vis absorption spectroscopy, steady-state and time-resolved fluorescence emission lifetimes, and X-ray diffraction in thin films. The films were doped with C60 quencher molecules and the change in fluorescence was measured to derive a relative quenching efficiency. Using emission decay, relative quenching efficiency, and dopant volume fraction as input, insights on exciton diffusion coefficient and exciton diffusion lengths were obtained from a Monte Carlo simulation. The octyl derivative (ZnTCO4PP) showed the strongest relative fluorescence quenching and, therefore, the highest exciton diffusion coefficient (5.29 × 10−3 cm2 s−1) and longest exciton diffusion length (~81 nm). The octyl derivative also showed the strongest out-of-plane stacking among the metalloporphyrins studied. This work demonstrates how molecular self-assembly can be used to modulate and direct exciton diffusion in solution-processable metalloporphyrin thin films engineered for optoelectronic and photonic applications.


Sign in / Sign up

Export Citation Format

Share Document