Exponential expansion for the tail of the waiting-time probability in the single-server queue with batch arrivals

1988 ◽  
Vol 20 (04) ◽  
pp. 880-895 ◽  
Author(s):  
J. C. W. Van Ommeren

This paper deals with the single-server queue with batch arrivals. We show that under suitable conditions the waiting-time distribution of an individual customer has an asymptotically exponential expansion. Computationally useful characterizations of the amplitude factor and the decay parameter are given for the practically important case in which the interarrival time and the service time have phase-type distributions.

1988 ◽  
Vol 20 (4) ◽  
pp. 880-895 ◽  
Author(s):  
J. C. W. Van Ommeren

This paper deals with the single-server queue with batch arrivals. We show that under suitable conditions the waiting-time distribution of an individual customer has an asymptotically exponential expansion. Computationally useful characterizations of the amplitude factor and the decay parameter are given for the practically important case in which the interarrival time and the service time have phase-type distributions.


1997 ◽  
Vol 34 (03) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


Author(s):  
J. Köllerström

Various elegant properties have been found for the waiting time distribution G for the queue GI/G/1 in statistical equilibrium, such as infinite divisibility ((1), p. 282) and that of having an exponential tail ((11), (2), p. 411, (1), p. 324). Here we derive another property which holds quite generally, provided the traffic intensity ρ < 1, and which is extremely simple, fitting in with the above results as well as yielding some useful properties in the form of upper and lower stochastic bounds for G which augment the bounds obtained by Kingman (5), (6), (8) and by Ross (10).


1976 ◽  
Vol 13 (03) ◽  
pp. 619-622 ◽  
Author(s):  
J. W. Cohen

The queueing system GI/G/1 with group arrivals and individual service of the customers is considered. For the stable situation the limiting distribution of the waiting time distribution of the kth served customer for k → ∞ is derived by using the theory of regenerative processes. It is assumed that the group sizes are i.i.d. variables of which the distribution is aperiodic. The relation between this limiting distribution and the stationary distribution of the virtual waiting time is derived.


1976 ◽  
Vol 13 (3) ◽  
pp. 619-622 ◽  
Author(s):  
J. W. Cohen

The queueing system GI/G/1 with group arrivals and individual service of the customers is considered. For the stable situation the limiting distribution of the waiting time distribution of the kth served customer for k → ∞ is derived by using the theory of regenerative processes. It is assumed that the group sizes are i.i.d. variables of which the distribution is aperiodic. The relation between this limiting distribution and the stationary distribution of the virtual waiting time is derived.


1963 ◽  
Vol 3 (2) ◽  
pp. 241-248 ◽  
Author(s):  
P. J. Brockwell

SUMMARYA queue at which arrivals occur randomly in batches of fixed size r and for which the service times are independent negative exponential variates is considered. Expressions are obtained for the moments of the transient waiting time distribution and the distribution of the number of customers in the system just before the nth batch arrives. The distribution of the number of customers served in a busy period is also determined.


1997 ◽  
Vol 34 (3) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Siew Khew Koh ◽  
Ah Hin Pooi ◽  
Yi Fei Tan

Consider the single server queue in which the system capacity is infinite and the customers are served on a first come, first served basis. Suppose the probability density functionf(t)and the cumulative distribution functionF(t)of the interarrival time are such that the ratef(t)/1-F(t)tends to a constant ast→∞, and the rate computed from the distribution of the service time tends to another constant. When the queue is in a stationary state, we derive a set of equations for the probabilities of the queue length and the states of the arrival and service processes. Solving the equations, we obtain approximate results for the stationary probabilities which can be used to obtain the stationary queue length distribution and waiting time distribution of a customer who arrives when the queue is in the stationary state.


Sign in / Sign up

Export Citation Format

Share Document