scholarly journals MULTIPLICITIES IN SYLOW SEQUENCES AND THE SOLVABLE RADICAL

2008 ◽  
Vol 78 (3) ◽  
pp. 477-486 ◽  
Author(s):  
GIL KAPLAN ◽  
DAN LEVY

AbstractA complete Sylow sequence, 𝒫=P1,…,Pm, of a finite group G is a sequence of m Sylow pi-subgroups of G, one for each pi, where p1,…,pm are all of the distinct prime divisors of |G|. A product of the form P1⋯Pm is called a complete Sylow product of G. We prove that the solvable radical of G equals the intersection of all complete Sylow products of G if, for every composition factor S of G, and for every ordering of the prime divisors of |S|, there exist a complete Sylow sequence 𝒫 of S, and g∈S such that g is uniquely factorizable in 𝒫 . This generalizes our results in Kaplan and Levy [‘The solvable radical of Sylow factorizable groups’, Arch. Math.85(6) (2005), 490–496].

Author(s):  
Hossein Moradi ◽  
Mohammad Reza Darafsheh ◽  
Ali Iranmanesh

Let G be a finite group. The prime graph Γ(G) of G is defined as follows: The set of vertices of Γ(G) is the set of prime divisors of |G| and two distinct vertices p and p' are connected in Γ(G), whenever G has an element of order pp'. A non-abelian simple group P is called recognizable by prime graph if for any finite group G with Γ(G)=Γ(P), G has a composition factor isomorphic to P. In [4] proved finite simple groups 2Dn(q), where n ≠ 4k are quasirecognizable by prime graph. Now in this paper we discuss the quasirecognizability by prime graph of the simple groups 2D2k(q), where k ≥ 9 and q is a prime power less than 105.


2010 ◽  
Vol 20 (07) ◽  
pp. 847-873 ◽  
Author(s):  
Z. AKHLAGHI ◽  
B. KHOSRAVI ◽  
M. KHATAMI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, p′ are joined by an edge if there is an element in G of order pp′. In [G. Y. Chen et al., Recognition of the finite almost simple groups PGL2(q) by their spectrum, Journal of Group Theory, 10 (2007) 71–85], it is proved that PGL(2, pk), where p is an odd prime and k > 1 is an integer, is recognizable by its spectrum. It is proved that if p > 19 is a prime number which is not a Mersenne or Fermat prime and Γ(G) = Γ(PGL(2, p)), then G has a unique nonabelian composition factor which is isomorphic to PSL(2, p). In this paper as the main result, we show that if p is an odd prime and k > 1 is an odd integer, then PGL(2, pk) is uniquely determined by its prime graph and so these groups are characterizable by their prime graphs.


2020 ◽  
Vol 23 (3) ◽  
pp. 447-470
Author(s):  
Nanying Yang ◽  
Mariya A. Grechkoseeva ◽  
Andrey V. Vasil’ev

AbstractWe refer to the set of the orders of elements of a finite group as its spectrum and say that groups are isospectral if their spectra coincide. We prove that, except for one specific case, the solvable radical of a nonsolvable finite group isospectral to a finite simple group is nilpotent.


2016 ◽  
Vol 10 (02) ◽  
pp. 1750024
Author(s):  
Feng Zhou

Let [Formula: see text] be a finite group, whose order has [Formula: see text] prime divisors. In this paper, we prove that if [Formula: see text] has a [Formula: see text]-complement for [Formula: see text] prime divisors [Formula: see text] of [Formula: see text] and [Formula: see text] has no section isomorphic to [Formula: see text]. Then [Formula: see text] is solvable, which generalizes a theorem of Hall.


2008 ◽  
pp. 85-120 ◽  
Author(s):  
Nikolai Gordeev ◽  
Fritz Grunewald ◽  
Boris Kunyavskii ◽  
Eugene Plotkin

Author(s):  
Ramesh Prasad Panda ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

The power graph [Formula: see text] of a finite group [Formula: see text] is the undirected simple graph whose vertex set is [Formula: see text], in which two distinct vertices are adjacent if one of them is an integral power of the other. For an integer [Formula: see text], let [Formula: see text] denote the cyclic group of order [Formula: see text] and let [Formula: see text] be the number of distinct prime divisors of [Formula: see text]. The minimum degree [Formula: see text] of [Formula: see text] is known for [Formula: see text], see [R. P. Panda and K. V. Krishna, On the minimum degree, edge-connectivity and connectivity of power graphs of finite groups, Comm. Algebra 46(7) (2018) 3182–3197]. For [Formula: see text], under certain conditions involving the prime divisors of [Formula: see text], we identify at most [Formula: see text] vertices such that [Formula: see text] is equal to the degree of at least one of these vertices. If [Formula: see text], or that [Formula: see text] is a product of distinct primes, we are able to identify two such vertices without any condition on the prime divisors of [Formula: see text].


2018 ◽  
Vol 17 (07) ◽  
pp. 1850122 ◽  
Author(s):  
Zahra Momen ◽  
Behrooz Khosravi

In [Li and Chen, A new characterization of the simple group [Formula: see text], Sib. Math. J. 53(2) (2012) 213–247.], it is proved that the simple group [Formula: see text] is uniquely determined by the set of orders of its maximal abelian subgroups. Also in [Momen and Khosravi, Groups with the same orders of maximal abelian subgroups as [Formula: see text], Monatsh. Math. 174 (2013) 285–303], the authors proved that if [Formula: see text], where [Formula: see text] is not a Mersenne prime, then every finite group with the same orders of maximal abelian subgroups as [Formula: see text], is isomorphic to [Formula: see text] or an extension of [Formula: see text] by a subgroup of the outer automorphism group of [Formula: see text]. In this paper, we prove that if [Formula: see text] is a finite group with the same orders of maximal abelian subgroups as [Formula: see text], then [Formula: see text] has a unique nonabelian composition factor which is isomorphic to [Formula: see text].


2017 ◽  
Vol 16 (03) ◽  
pp. 1750051 ◽  
Author(s):  
Jiangtao Shi ◽  
Wei Meng ◽  
Cui Zhang

Let [Formula: see text] be a finite group and [Formula: see text] any divisor of [Formula: see text], the order of [Formula: see text]. Let [Formula: see text], Frobenius’ theorem states that [Formula: see text] for some positive integer [Formula: see text]. We call [Formula: see text] a Frobenius quotient of [Formula: see text] for [Formula: see text]. Let [Formula: see text] be the set of all Frobenius quotients of [Formula: see text], we call [Formula: see text] the Frobenius spectrum of [Formula: see text]. In this paper, we give a complete classification of finite groups [Formula: see text] with [Formula: see text] for [Formula: see text] being the smallest prime divisor of [Formula: see text]. Moreover, let [Formula: see text] be a finite group of even order, [Formula: see text] the set of all Frobenius quotients of [Formula: see text] for even divisors of [Formula: see text] and [Formula: see text] the maximum Frobenius quotient in [Formula: see text], we prove that [Formula: see text] is always solvable if [Formula: see text] or [Formula: see text] and [Formula: see text] is not a composition factor of [Formula: see text].


2020 ◽  
pp. 2050010
Author(s):  
Andrea Lucchini

For a finite group [Formula: see text] denote by [Formula: see text] the genus of the subgroup graph of [Formula: see text] We prove that [Formula: see text] tends to infinity as either the rank of [Formula: see text] or the number of prime divisors of [Formula: see text] tends to infinity.


2006 ◽  
Vol 343 (6) ◽  
pp. 387-392 ◽  
Author(s):  
Nikolai Gordeev ◽  
Fritz Grunewald ◽  
Boris Kunyavskiĭ ◽  
Eugene Plotkin

Sign in / Sign up

Export Citation Format

Share Document