SECOND HANKEL DETERMINANT OF LOGARITHMIC COEFFICIENTS OF CONVEX AND STARLIKE FUNCTIONS

Author(s):  
BOGUMIŁA KOWALCZYK ◽  
ADAM LECKO

Abstract We begin the study of Hankel matrices whose entries are logarithmic coefficients of univalent functions and give sharp bounds for the second Hankel determinant of logarithmic coefficients of convex and starlike functions.

Author(s):  
Bogumiła Kowalczyk ◽  
Adam Lecko

AbstractIn the present paper, we found sharp bounds of the second Hankel determinant of logarithmic coefficients of starlike and convex functions of order $$\alpha $$ α .


Author(s):  
Young Jae Sim ◽  
Adam Lecko ◽  
Derek K. Thomas

AbstractLet f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ D = { z ∈ C : | z | < 1 } , and $${{\mathcal {S}}}$$ S be the subclass of normalized univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑ n = 2 ∞ a n z n for $$z\in {\mathbb {D}}$$ z ∈ D . We give sharp bounds for the modulus of the second Hankel determinant $$ H_2(2)(f)=a_2a_4-a_3^2$$ H 2 ( 2 ) ( f ) = a 2 a 4 - a 3 2 for the subclass $$ {\mathcal F_{O}}(\lambda ,\beta )$$ F O ( λ , β ) of strongly Ozaki close-to-convex functions, where $$1/2\le \lambda \le 1$$ 1 / 2 ≤ λ ≤ 1 , and $$0<\beta \le 1$$ 0 < β ≤ 1 . Sharp bounds are also given for $$|H_2(2)(f^{-1})|$$ | H 2 ( 2 ) ( f - 1 ) | , where $$f^{-1}$$ f - 1 is the inverse function of f. The results settle an invariance property of $$|H_2(2)(f)|$$ | H 2 ( 2 ) ( f ) | and $$|H_2(2)(f^{-1})|$$ | H 2 ( 2 ) ( f - 1 ) | for strongly convex functions.


We study the estimates for the Second Hankel determinant of analytic functions. Our class includes (j,k)-convex, (j,k)-starlike functions and Ma-Minda starlike and convex functions..


2019 ◽  
Vol 12 (02) ◽  
pp. 1950017
Author(s):  
H. Orhan ◽  
N. Magesh ◽  
V. K. Balaji

In this work, we obtain an upper bound estimate for the second Hankel determinant of a subclass [Formula: see text] of analytic bi-univalent function class [Formula: see text] which is associated with Chebyshev polynomials in the open unit disk.


Filomat ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 503-516 ◽  
Author(s):  
H.M. Srivastava ◽  
Şahsene Altınkaya ◽  
Sibel Yalçın

In this paper, we discuss the various properties of a newly-constructed subclass of the class of normalized bi-univalent functions in the open unit disk, which is defined here by using a symmetric basic (or q-) derivative operator. Moreover, for functions belonging to this new basic (or q-) class of normalized biunivalent functions, we investigate the estimates and inequalities involving the second Hankel determinant.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3897-3904 ◽  
Author(s):  
Halit Orhan ◽  
Evrim Toklu ◽  
Ekrem Kadıoğlu

In this paper we introduce and study some properties of k-bi-starlike functions defined by making use of the S?l?gean derivative operator. Upper bounds on the second Hankel determinant for k-bi-starlike functions are investigated. Relevant connections of the results presented here with various well-known results are briefly indicated.


Sign in / Sign up

Export Citation Format

Share Document