convex functions
Recently Published Documents


TOTAL DOCUMENTS

3646
(FIVE YEARS 926)

H-INDEX

55
(FIVE YEARS 15)

2022 ◽  
Vol 40 ◽  
pp. 1-16
Author(s):  
Fakhrodin Hashemi ◽  
Saeed Ketabchi

Optimal correction of an infeasible equations system as Ax + B|x|= b leads into a non-convex fractional problem. In this paper, a regularization method(ℓp-norm, 0 < p < 1), is presented to solve mentioned fractional problem. In this method, the obtained problem can be formulated as a non-convex and nonsmooth optimization problem which is not Lipschitz. The objective function of this problem can be decomposed as a difference of convex functions (DC). For this reason, we use a special smoothing technique based on DC programming. The numerical results obtained for generated problem show high performance and the effectiveness of the proposed method.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Rabia Bibi ◽  
Ammara Nosheen ◽  
Shanaz Bano ◽  
Josip Pečarić

AbstractIn this paper we obtain several refinements of the Jensen inequality on time scales by generalizing Jensen’s functional for n-convex functions. We also investigate the bounds for the identities related to the new improvements obtained.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Vasudevarao Allu ◽  
Adam Lecko ◽  
Derek K. Thomas

AbstractLet f be analytic in $$\mathbb {D}=\{z\in \mathbb {C}:|z|<1\}$$ D = { z ∈ C : | z | < 1 } , and be given by $$f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$$ f ( z ) = z + ∑ n = 2 ∞ a n z n . We give sharp bounds for the second Hankel determinant, some Toeplitz, and some Hermitian-Toeplitz determinants of functions in the class of Ozaki close-to-convex functions, together with a sharp bound for the Zalcman functional $$J_{2,3}(f).$$ J 2 , 3 ( f ) .


Author(s):  
Khalida Inayat Noor ◽  
Muhammad Aslam Noor

In this paper, we introduce a new class $K_{q}(\alpha), \quad 0<\alpha \leq1, \quad 0<q<1, $ of normalized analytic functions $f $ such that $\big|\arg\frac{D_qf(z)}{D_qg(z)}\big| \leq \alpha \frac{\pi}{2},$ where $g$ is convex univalent in $E= \{z: |z|<1\} $ and $D_qf $ is the $q$-derivative of $f $ defined as: $$D_qf(z)= \frac{f(z)-f(qz)}{(1-q)z}, \quad z\neq0\quad D_qf(0)= f^{\prime}(0). $$ The problem of growth of the Hankel determinant $H_n(k) $ for the class $K_q(\alpha) $ is investigated. Some known interesting results are pointed out as applications of the main results.


2022 ◽  
Vol 6 (1) ◽  
pp. 33
Author(s):  
Sabah Iftikhar ◽  
Samet Erden ◽  
Muhammad Aamir Ali ◽  
Jamel Baili ◽  
Hijaz Ahmad

Inequality theory has attracted considerable attention from scientists because it can be used in many fields. In particular, Hermite–Hadamard and Simpson inequalities based on convex functions have become a cornerstone in pure and applied mathematics. We deal with Simpson’s second-type inequalities based on coordinated convex functions in this work. In this paper, we first introduce Simpson’s second-type integral inequalities for two-variable functions whose second-order partial derivatives in modulus are convex on the coordinates. In addition, similar results are acquired by considering that powers of the absolute value of second-order partial derivatives of these two-variable functions are convex on the coordinates. Finally, some applications for Simpson’s 3/8 cubature formula are given.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 204
Author(s):  
Muhammad Bilal Khan ◽  
Hatim Ghazi Zaini ◽  
Savin Treanțǎ ◽  
Mohamed S. Soliman ◽  
Kamsing Nonlaopon

The concepts of convex and non-convex functions play a key role in the study of optimization. So, with the help of these ideas, some inequalities can also be established. Moreover, the principles of convexity and symmetry are inextricably linked. In the last two years, convexity and symmetry have emerged as a new field due to considerable association. In this paper, we study a new version of interval-valued functions (I-V·Fs), known as left and right χ-pre-invex interval-valued functions (LR-χ-pre-invex I-V·Fs). For this class of non-convex I-V·Fs, we derive numerous new dynamic inequalities interval Riemann–Liouville fractional integral operators. The applications of these repercussions are taken into account in a unique way. In addition, instructive instances are provided to aid our conclusions. Meanwhile, we’ll discuss a few specific examples that may be extrapolated from our primary findings.


Author(s):  
Young Jae Sim ◽  
Derek K. Thomas

AbstractLet f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ D = { z ∈ C : | z | < 1 } , and $${\mathcal {S}}$$ S be the subclass of normalised univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑ n = 2 ∞ a n z n for $$z\in {\mathbb {D}}$$ z ∈ D . Let F be the inverse function of f defined in some set $$|\omega |\le r_{0}(f)$$ | ω | ≤ r 0 ( f ) , and be given by $$F(\omega )=\omega +\sum _{n=2}^{\infty }A_n \omega ^n$$ F ( ω ) = ω + ∑ n = 2 ∞ A n ω n . We prove the sharp inequalities $$-1/3 \le |A_4|-|A_3| \le 1/4$$ - 1 / 3 ≤ | A 4 | - | A 3 | ≤ 1 / 4 for the class $${\mathcal {K}}\subset {\mathcal {S}}$$ K ⊂ S of convex functions, thus providing an analogue to the known sharp inequalities $$-1/3 \le |a_4|-|a_3| \le 1/4$$ - 1 / 3 ≤ | a 4 | - | a 3 | ≤ 1 / 4 , and giving another example of an invariance property amongst coefficient functionals of convex functions.


2022 ◽  
Vol 77 (1) ◽  
Author(s):  
Yassine Bedrani ◽  
Fuad Kittaneh ◽  
Mohammed Sababheh
Keyword(s):  

2022 ◽  
Author(s):  
Debojyoti Dey ◽  
Bhaskar Mukhoty ◽  
Purushottam Kar

Sign in / Sign up

Export Citation Format

Share Document