chebyshev polynomials
Recently Published Documents





Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 100
Robert Reynolds ◽  
Allan Stauffer

The aim of the current document is to evaluate a quadruple integral involving the Chebyshev polynomial of the first kind Tn(x) and derive in terms of the Hurwitz-Lerch zeta function. Special cases are evaluated in terms of fundamental constants. The zero distribution of almost all Hurwitz-Lerch zeta functions is asymmetrical. All the results in this work are new.

2022 ◽  
Vol 2022 ◽  
pp. 1-20
Khadijeh Sadri ◽  
Hossein Aminikhah

This work devotes to solving a class of delay fractional partial differential equations that arises in physical, biological, medical, and climate models. For this, a numerical scheme is implemented that applies operational matrices to convert the main problem into a system of algebraic equations; then, solving the resultant system leads to an approximate solution. The two-variable Chebyshev polynomials of the sixth kind, as basis functions in the proposed method, are constructed by the one-variable ones, and their operational matrices are derived. Error bounds of approximate solutions and their fractional and classical derivatives are computed. With the aid of these bounds, a bound for the residual function is estimated. Three illustrative examples demonstrate the simplicity and efficiency of the proposed method.

2022 ◽  
Vol 2022 ◽  
pp. 1-19
Juan Liu ◽  
Laiyi Zhu

In the paper, we study the upper bound estimation of the Lebesgue constant of the bivariate Lagrange interpolation polynomial based on the common zeros of product Chebyshev polynomials of the second kind on the square − 1,1 2 . And, we prove that the growth order of the Lebesgue constant is O n + 2 2 . This result is different from the Lebesgue constant of Lagrange interpolation polynomial on the unit disk, the growth order of which is O n . And, it is different from the Lebesgue constant of the Lagrange interpolation polynomial based on the common zeros of product Chebyshev polynomials of the first kind on the square − 1,1 2 , the growth order of which is O ln n 2 .

2021 ◽  
Andrew Amgad ◽  
A. M. AbdelAty ◽  
Menna T. M. M. Elbarawy ◽  
Hazem A. Attia ◽  
A. G. Radwan

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3271
Cuixia Niu ◽  
Huiqing Liao ◽  
Heping Ma ◽  
Hua Wu

In this paper, we present some important approximation properties of Chebyshev polynomials in the Legendre norm. We mainly discuss the Chebyshev interpolation operator at the Chebyshev–Gauss–Lobatto points. The cases of single domain and multidomain for both one dimension and multi-dimensions are considered, respectively. The approximation results in Legendre norm rather than in the Chebyshev weighted norm are given, which play a fundamental role in numerical analysis of the Legendre–Chebyshev spectral method. These results are also useful in Clenshaw–Curtis quadrature which is based on sampling the integrand at Chebyshev points.

2021 ◽  
Surath Ghosh ◽  
Snehasis Kundu ◽  
Sunil Kumar

Abstract In this study, the effects of time-memory on the mixing and nonequilibrium transportation of particles in an unsteady turbulent flow are investigated. The memory effect of particles is captured through a time-fractional advection-dispersion equation rather than a traditional advection-dispersion equation. The time-fractional derivative is considered in Caputo sense which includes a power-law memory kernel that captures the power-law jumps of particles. The time-fractional model is solved using the Chebyshev collocation method. To make the solution procedure more robust three different kinds of Chebyshev polynomials are considered. The time-fractional derivative is approximated using the finite difference method at small time intervals and numerical solutions are obtained in terms of Chebyshev polynomials. The model solutions are compared with existing experimental data of traditional conditions and satisfactory results are obtained. Apart from this, the effects of time-memory are analyzed for bottom concentration and transient concentration distribution of particles. The results show that for uniform initial conditions, bottom concentration increases with time as the order of fractional derivative decreases. In the case of transient concentration, the value of concentration initially decreases when $T<1$ and thereafter increases throughout the flow depth. The effects of time-memory \textcolor{green}{are} also analyzed under steady flow conditions. Results show that under steady conditions, transient concentration is more sensitive for linear, parabolic, and parabolic-constant models \textcolor{green}{of} sediment diffusivity rather than the constant model.

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2407
Waleed Mohamed Abd-Elhameed ◽  
Seraj Omar Alkhamisi

The principal objective of this article is to develop new formulas of the so-called Chebyshev polynomials of the fifth-kind. Some fundamental properties and relations concerned with these polynomials are proposed. New moments formulas of these polynomials are obtained. Linearization formulas for these polynomials are derived using the moments formulas. Connection problems between the fifth-kind Chebyshev polynomials and some other orthogonal polynomials are explicitly solved. The linking coefficients are given in forms involving certain generalized hypergeometric functions. As special cases, the connection formulas between Chebyshev polynomials of the fifth-kind and the well-known four kinds of Chebyshev polynomials are shown. The linking coefficients are all free of hypergeometric functions.

2021 ◽  
Vol 11 (6) ◽  
Haoyu Guan ◽  
Wenxian Zhang

Computation of a large group of interior eigenvalues at the middle spectrum is an important problem for quantum many-body systems, where the level statistics provides characteristic signatures of quantum chaos. We propose an exact numerical method, dual applications of Chebyshev polynomials (DACP), to simultaneously find thousands of central eigenvalues, where the level space decreases exponentially with the system size. To disentangle the near-degenerate problem, we employ twice the Chebyshev polynomials, to construct an exponential semicircle filter as a preconditioning step and to generate a large set of proper basis states in the desired subspace. Numerical calculations on Ising spin chain and spin glass shards confirm the correctness and efficiency of DACP. As numerical results demonstrate, DACP is 30 times faster than the state-of-the-art shift-invert method for the Ising spin chain while 8 times faster for the spin glass shards. In contrast to the shift-invert method, the computation time of DACP is only weakly influenced by the required number of eigenvalues, which renders it a powerful tool for large scale eigenvalues computations. Moreover, the consumed memory also remains a small constant (5.6 GB) for spin-1/2 systems consisting of up to 20 spins, making it desirable for parallel computing.

Hala Alaqad ◽  
Jianhua Gong ◽  
Gaven Martin

The principal character of a representation of the free group of rank two into [Formula: see text] is a triple of complex numbers that determines an irreducible representation uniquely up to conjugacy. It is a central problem in the geometry of discrete groups and low dimensional topology to determine when such a triple represents a discrete group which is not virtually abelian, that is, a Kleinian group. A classical necessary condition is Jørgensen’s inequality. Here, we use certain shifted Chebyshev polynomials and trace identities to determine new families of such inequalities, some of which are best possible. The use of these polynomials also shows how we can identify the principal character of some important subgroups from that of the group itself.

Sign in / Sign up

Export Citation Format

Share Document