scholarly journals Tilting pairs in extriangulated categories

Author(s):  
Tiwei Zhao ◽  
Bin Zhu ◽  
Xiao Zhuang

Abstract Extriangulated categories were introduced by Nakaoka and Palu to give a unification of properties in exact categories and extension-closed subcategories of triangulated categories. A notion of tilting pairs in an extriangulated category is introduced in this paper. We give a Bazzoni characterization of tilting pairs in this setting. We also obtain the Auslander–Reiten correspondence of tilting pairs which classifies finite $\mathcal {C}$ -tilting subcategories for a certain self-orthogonal subcategory $\mathcal {C}$ with some assumptions. This generalizes the known results given by Wei and Xi for the categories of finitely generated modules over Artin algebras, thereby providing new insights in exact and triangulated categories.

Author(s):  
Alireza Nasr-Isfahani ◽  
Mohsen Shekari

In this paper, we study the category of finitely generated modules over a class of right [Formula: see text]-Nakayama artin algebras. This class of algebras appear naturally in the study of representation-finite artin algebras. First, we give a characterization of right [Formula: see text]-Nakayama artin algebras. Then, we classify finitely generated indecomposable right modules over right [Formula: see text]-Nakayama artin algebras. We also compute almost split sequences for the class of right [Formula: see text]-Nakayama artin algebras.


2008 ◽  
Vol 102 (2) ◽  
pp. 206 ◽  
Author(s):  
Sean Sather-Wagstaff ◽  
Diana White

We extend Auslander and Buchsbaum's Euler characteristic from the category of finitely generated modules of finite projective dimension to the category of modules of finite G-dimension using Avramov and Martsinkovsky's notion of relative Betti numbers. We prove analogues of some properties of the classical invariant and provide examples showing that other properties do not translate to the new context. One unexpected property is in the characterization of the extremal behavior of this invariant: the vanishing of the Euler characteristic of a module $M$ of finite G-dimension implies the finiteness of the projective dimension of $M$. We include two applications of the Euler characteristic as well as several explicit calculations.


1980 ◽  
Vol 32 (2) ◽  
pp. 342-349 ◽  
Author(s):  
Sverre O. Smalø

In this paper we are going to use a result of H. Harada and Y. Sai concerning composition of nonisomorphisms between indecomposable modules and the theory of almost split sequences introduced in the representation theory of Artin algebras by M. Auslander and I. Reiten to obtain the inductive step in the second Brauer-Thrall conjecture.Section 1 is devoted to giving the necessary background in the theory of almost split sequences.As an application we get the first Brauer-Thrall conjecture for Artin algebras. This conjecture says that there is no bound on the length of the finitely generated indecomposable modules over an Artin algebra of infinite type, i.e., an Artin algebra such that there are infinitely many nonisomorphic indecomposable finitely generated modules. This result was first proved by A. V. Roiter [8] and later in general for Artin rings by M. Auslander [2] using categorical methods.


1979 ◽  
Vol 27 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Idun Reiten

AbstractTwo artin algebras Λ and Λ′ are said to be stably equivalent if their categories of finitely generated modules modulo projectives are equivalent. In this paper a characterization is given of the artin algebras stably equivalent to Nakayama algebras of Loewy length (at most) four. The proof is an illustration of the technique of using irreducible maps to study problems about stable equivlence.


2020 ◽  
Vol 23 (5) ◽  
pp. 801-829
Author(s):  
Mark Pengitore

AbstractThe function {\mathrm{F}_{G}(n)} gives the maximum order of a finite group needed to distinguish a nontrivial element of G from the identity with a surjective group morphism as one varies over nontrivial elements of word length at most n. In previous work [M. Pengitore, Effective separability of finitely generated nilpotent groups, New York J. Math. 24 2018, 83–145], the author claimed a characterization for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. However, a counterexample to the above claim was communicated to the author, and consequently, the statement of the asymptotic characterization of {\mathrm{F}_{N}(n)} is incorrect. In this article, we introduce new tools to provide lower asymptotic bounds for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. Moreover, we introduce a class of finitely generated nilpotent groups for which the upper bound of the above article can be improved. Finally, we construct a class of finitely generated nilpotent groups N for which the asymptotic behavior of {\mathrm{F}_{N}(n)} can be fully characterized.


2016 ◽  
Vol 23 (04) ◽  
pp. 701-720 ◽  
Author(s):  
Xiangui Zhao ◽  
Yang Zhang

Differential difference algebras are generalizations of polynomial algebras, quantum planes, and Ore extensions of automorphism type and of derivation type. In this paper, we investigate the Gelfand-Kirillov dimension of a finitely generated module over a differential difference algebra through a computational method: Gröbner-Shirshov basis method. We develop the Gröbner-Shirshov basis theory of differential difference algebras, and of finitely generated modules over differential difference algebras, respectively. Then, via Gröbner-Shirshov bases, we give algorithms for computing the Gelfand-Kirillov dimensions of cyclic modules and finitely generated modules over differential difference algebras.


1984 ◽  
Vol 12 (15) ◽  
pp. 1795-1812 ◽  
Author(s):  
Luigi Salce ◽  
Paolo Zanardo

2018 ◽  
Vol 17 (11) ◽  
pp. 1850202 ◽  
Author(s):  
Ahad Rahimi

Let [Formula: see text] be a Noetherian local ring and [Formula: see text] a finitely generated [Formula: see text]-module. We say [Formula: see text] has maximal depth if there is an associated prime [Formula: see text] of [Formula: see text] such that depth [Formula: see text]. In this paper, we study finitely generated modules with maximal depth. It is shown that the maximal depth property is preserved under some important module operations. Generalized Cohen–Macaulay modules with maximal depth are classified. Finally, the attached primes of [Formula: see text] are considered for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document