EVALUATION OF CONVOLUTION SUMS AND FOR k = a · b = 21, 33, AND 35

2021 ◽  
pp. 1-20
Author(s):  
K. PUSHPA ◽  
K. R. VASUKI

Abstract The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$ , for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).

2014 ◽  
Vol 10 (08) ◽  
pp. 1929-1937 ◽  
Author(s):  
B. Ramakrishnan ◽  
Brundaban Sahu

We evaluate the convolution sums ∑l,m∈ℕ,l+2m=n σ3(l)σ3(m), ∑l,m∈ℕ,l+3m=n σ3(l) × σ3(m), ∑l,m∈ℕ,2l+3m=n σ3(l)σ3(m) and ∑l,m∈ℕ,l+6m=n σ3(l)σ3(m) for all n ∈ ℕ using the theory of modular forms and use these convolution sums to determine the number of representations of a positive integer n by the quadratic forms Q8 ⊕ Q8 and Q8 ⊕ 2Q8, where the quadratic form Q8 is given by [Formula: see text]


2017 ◽  
Vol 15 (1) ◽  
pp. 446-458 ◽  
Author(s):  
Ebénézer Ntienjem

Abstract The convolution sum, $ \begin{array}{} \sum\limits_{{(l\, ,m)\in \mathbb{N}_{0}^{2}}\atop{\alpha \,l+\beta\, m=n}} \sigma(l)\sigma(m), \end{array} $ where αβ = 22, 44, 52, is evaluated for all natural numbers n. Modular forms are used to achieve these evaluations. Since the modular space of level 22 is contained in that of level 44, we almost completely use the basis elements of the modular space of level 44 to carry out the evaluation of the convolution sums for αβ = 22. We then use these convolution sums to determine formulae for the number of representations of a positive integer by the octonary quadratic forms $a\,(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2})+b\,(x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}),$ where (a, b) = (1, 11), (1, 13).


2014 ◽  
Vol 10 (06) ◽  
pp. 1385-1394 ◽  
Author(s):  
Shaun Cooper ◽  
Dongxi Ye

The theory of quasimodular forms is used to evaluate the convolution sums [Formula: see text] for all positive integers n. As a consequence, the number of representations of a positive integer n by the octonary quadratic form [Formula: see text] is determined.


2007 ◽  
Vol 03 (02) ◽  
pp. 231-261 ◽  
Author(s):  
EMMANUEL ROYER

We provide a systematic method to compute arithmetic sums including some previously computed by Alaca, Besge, Cheng, Glaisher, Huard, Lahiri, Lemire, Melfi, Ou, Ramanujan, Spearman and Williams. Our method is based on quasimodular forms. This extension of modular forms has been constructed by Kaneko and Zagier.


2013 ◽  
Vol 09 (03) ◽  
pp. 799-809 ◽  
Author(s):  
B. RAMAKRISHNAN ◽  
BRUNDABAN SAHU

We evaluate the convolution sums ∑l,m∈ℕ,l+15m=nσ(l)σ(m) and ∑l,m∈ℕ,3l+5m=nσ(l)σ(m) for all n ∈ ℕ using the theory of quasimodular forms and use these convolution sums to determine the number of representations of a positive integer n by the form [Formula: see text] We also determine the number of representations of positive integers by the quadratic form [Formula: see text] by using the convolution sums obtained earlier by Alaca, Alaca and Williams [Evaluation of the convolution sums ∑l+6m=nσ(l)σ(m) and ∑2l+3m=nσ(l)σ(m), J. Number Theory124(2) (2007) 491–510; Evaluation of the convolution sums ∑l+24m=nσ(l)σ(m) and ∑3l+8m=nσ(l)σ(m), Math. J. Okayama Univ.49 (2007) 93–111].


Author(s):  
Johann Franke

AbstractBased on the new approach to modular forms presented in [6] that uses rational functions, we prove a dominated convergence theorem for certain modular forms in the Eisenstein space. It states that certain rearrangements of the Fourier series will converge very fast near the cusp $$\tau = 0$$ τ = 0 . As an application, we consider L-functions associated to products of Eisenstein series and present natural generalized Dirichlet series representations that converge in an expanded half plane.


2013 ◽  
Vol 50 (4) ◽  
pp. 1389-1413 ◽  
Author(s):  
Daeyeoul Kim ◽  
Aeran Kim ◽  
Ayyadurai Sankaranarayanan

2014 ◽  
Vol 15 (3) ◽  
pp. 471-510 ◽  
Author(s):  
Ellen Eischen ◽  
Xin Wan

We construct$p$-adic families of Klingen–Eisenstein series and$L$-functions for cusp forms (not necessarily ordinary) unramified at an odd prime$p$on definite unitary groups of signature$(r,0)$(for any positive integer$r$) for a quadratic imaginary field${\mathcal{K}}$split at$p$. When$r=2$, we show that the constant term of the Klingen–Eisenstein family is divisible by a certain$p$-adic$L$-function.


Sign in / Sign up

Export Citation Format

Share Document