scholarly journals The Critical Galton-Watson Process Without Further Power Moments

2007 ◽  
Vol 44 (03) ◽  
pp. 753-769 ◽  
Author(s):  
S. V. Nagaev ◽  
V. Wachtel

In this paper we prove a conditional limit theorem for a critical Galton-Watson branching process {Z n ; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972) we use a functional normalization, which gives an exponential limit. We also give an alternative proof of Sze's (1976) result on the asymptotic behavior of the nonextinction probability.

2007 ◽  
Vol 44 (3) ◽  
pp. 753-769 ◽  
Author(s):  
S. V. Nagaev ◽  
V. Wachtel

In this paper we prove a conditional limit theorem for a critical Galton-Watson branching process {Zn; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972) we use a functional normalization, which gives an exponential limit. We also give an alternative proof of Sze's (1976) result on the asymptotic behavior of the nonextinction probability.


Author(s):  
Amos Golan

In this chapter I provide additional rationalization for using the info-metrics framework. This time the justifications are in terms of the statistical, mathematical, and information-theoretic properties of the formalism. Specifically, in this chapter I discuss optimality, statistical and computational efficiency, sufficiency, the concentration theorem, the conditional limit theorem, and the concept of information compression. These properties, together with the other properties and measures developed in earlier chapters, provide logical, mathematical, and statistical justifications for employing the info-metrics framework.


1975 ◽  
Vol 7 (03) ◽  
pp. 495-510
Author(s):  
Carla Lipow

A continuous-time Markov branching process is modified to allow some dependence of offspring generating function on population size. The model involves a given population size M, below which the offspring generating function is supercritical and above which it is subcritical. Immigration is allowed when the population size is 0. The process has a stationary measure, and an expression for its generating function is found. A limit theorem for the stationary measure as M tends to ∞ is then obtained.


1976 ◽  
Vol 13 (3) ◽  
pp. 444-454 ◽  
Author(s):  
P. J. Green

For a left-continuous random walk, absorbing at 0, the joint distribution of the maximum and time to absorption is derived. A description of the tails of the distributions and a conditional limit theorem are obtained for the cases where absorption is certain.


1971 ◽  
Vol 8 (3) ◽  
pp. 589-598 ◽  
Author(s):  
Krishna B. Athreya

The functional equation ϕ(mu) = h(ϕ(u)) where is a probability generating function with 1 < m = h'(1 –) < ∞ and where F(t) is a non-decreasing right continuous function with F(0 –) = 0, F(0 +) < 1 and F(+ ∞) = 1 arises in a Galton-Watson process in a natural way. We prove here that for any if and only if This unifies several results in the literature on the supercritical Galton-Watson process. We generalize this to an age dependent branching process case as well.


1971 ◽  
Vol 8 (03) ◽  
pp. 589-598 ◽  
Author(s):  
Krishna B. Athreya

The functional equation ϕ(mu) = h(ϕ(u)) where is a probability generating function with 1 &lt; m = h'(1 –) &lt; ∞ and where F(t) is a non-decreasing right continuous function with F(0 –) = 0, F(0 +) &lt; 1 and F(+ ∞) = 1 arises in a Galton-Watson process in a natural way. We prove here that for any if and only if This unifies several results in the literature on the supercritical Galton-Watson process. We generalize this to an age dependent branching process case as well.


Sign in / Sign up

Export Citation Format

Share Document